A

Lightning Talks

Stefan Keller

From Code to DB: How to make
Pythons and Elephants dance together!

PostgreSQL

From Code to Database Queries:
How to Make Pythons and Elephants
Dance Together

Lightning Talk

Prof. Stefan Keller

Institute for Software, FH OST Campus Rapperswil, ost.ch/ifs
Slides license is Creative Commons

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

2 I Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬂ.

3

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Introduction

« Connecting Python applications to databases like PostgreSQL
is a common yet complex task,
- given the power of modern SQL

- and the choice of existing libraries.

* This talk evaluates top 7 Python software libraries
- that make it easy to connect Python to databases like PostgreSQL,

using 7 criteria such as lightweightness, Pythonic style, type-safety, SQL-like query building, result
handling, SQL dialect support (especially, but not only PostgreSQL), Pandas integration.

+ (Not considered: code synchronization and schema evolution support.

Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024

s 1]

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

The top 7 Python software libraries

* SQLAIchemy Core (requires psycog2 for PG)
+ GitHub stars: ~7,000+. First released in 2005

+ Awidely-used SQL toolkit and Object-Relational
Mapper (ORM) that provides full control over SQL
expressions and database management.

* PyPika (complements psycog?2 for PG)
- GitHub stars: ~2,200. Released in 2017

« PyPika is a pure SQL query builder focused on
providing expressive query generation.

* Records (requires psycog?2 for PG)
- GitHub stars: ~3,000. Released in 2016

- Asimple wrapper for making database queries,
emphasizing straightforward execution and
fetching of results without needing an ORM.

4 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller

Pony ORM (requires psycog?2 for PG)
GitHub stars: ~3,500. Released in 2009

An ORM that allows Pythonic syntax for db queries, including
support for native Python generators to simplify query logic.

Databases (with SQLAIchemy; can use psycog2)
GitHub stars: ~4,400 . Released in 2018

An asynchronous database library built to work seamlessly
with SQLAIchemy, widely used in async Python applications.

Peewee (requires psycog2 for PG)
GitHub stars: ~10,000. Released in 2010

A small, lightweight ORM known for its simplicity and
expressiveness while offering many advanced ORM features.

Tortoise ORM (requires asyncpg for PG)
GitHub stars: ~7,500. Released in 2018.

A fully asynchronous ORM inspired by Django, designed for
compatibility with async frameworks like FastAPI.

17.+18 October 2024 @,
o

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Comparison

Feature SQLé‘I)crr;emy PyPika Pony ORM PEIELERES Peewee Tortoise ORM

Lightweightness Moderate High High Moderate Moderate High Moderate
Pythonic Style High High High High High High High
Typing Support Partial Partial No Yes Yes Partial Yes (full support)

Yes (via Python

Query Building Yes Yes No comprehensions) Yes (via Core) Yes (via models) Yes (via models)
N/A (query
Result Handling “ResultProxy” only) “RecordCollection’ “Entity” objects Async Rows “Model" instances “Model' instances
Multiple
(PostgreSQL, Multiple Multiple
SQL Dialect Multiple Multiple Multiple MySQL, SQLite, Multiple (PostgreSQL, (PostgreSQL,
Support (PostgreSQL) (PostgreSQL) (PostgreSQL) Oracle) (PostgreSQL) MySQL, SQLite) MySQL, SQLite)
Good (using
Pandas *.dicts()" or Good (requires
Integration Good Limited Good Limited Good “tuples()’) conversion)

5 I Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Summary Ranking by Feature

1st Place 2nd Place 3rd Place 4th Place 5th Place 6th Place 7th Place

Lightweightness

Pythonic Style

Typing Support

Query Building

Result Handling

SQL Dialect
Support

Pandas
Integration

PyPika
PyPika
Tortoise ORM
SQLAIchemy
Core
Records
SQLAIchemy

Core

Records

Records Peewee
Pony ORM Databases
Pony ORM Databases
PyPika Pony ORM
Databases Peewee
Pony ORM Peewee
SQLAIchemy

Core Databases

6 I Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller

Tortoise
ORM

Peewee

Peewee

Tortoise
ORM

Tortoise

ORM

Databases

Peewee

Databases

Records

PyPika

Peewee

SQLAIchemy

Core

Tortoise ORM

Tortoise ORM

SQLAIchemy
Core

Tortoise ORM

SQLAIchemy

Core

Databases

Pony ORM

PyPika

PyPika

Pony ORM
SQLAIchemy
Core
Records
Records
PyPika

Records

Pony ORM

17.+18 October 2024 /ﬁ?

From Code to Database Queries: How to Make Pythons

Overall Ranking

Library

1 SQLAIchemy
Core

2 PyPika

3 Records

4 Pony ORM

5 Databases

6 Peewee

7 Tortoise ORM

Strengths

Comprehensive query building, excellent SQL dialect support, and

good Pandas integration. Supports schema evolution with Alembic.

Extremely lightweight, highly Pythonic, with a fluent, readable
interface for query building.

Simple to use, great for result handling, and has strong integration
with Pandas.

Pythonic style and query building using Python comprehensions;
extensive SQL dialect support. Supports built-in schema evolution.

Asynchronous support, supports type annotations, and integrates
SQLAIchemy Core for query building and for schema evolution.

Lightweight and Pythonic with model-based query construction;
moderate Pandas integration. Supports built-in schema evolution.

Full type annotation support, async capabilities, and model-based
query building. Supports built-in schema evolution.

Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller

and Elephants Dance Together

Weaknesses

Moderate in terms of lightweightness; typing support is
only partial.

Lacks direct result handling and relies on adapters for
executing queries. Does not support schema evolution.

Limited to executing raw SQL queries; no typing or
query-building. Does not support schema evolution.

Moderate in terms of lightweightness and lacks Pandas
integration.

Requires handling async results for Pandas integration,
and it is not as lightweight compared to others.

Lacks full typing support and is less comprehensive in
terms of query building compared to SQLAIchemy Core.

Limited Pandas integration; not as lightweight as some
other options.

17.+18 October 2024 g7,
L

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

SQLAIchemy Core

Define the 'author' table structure (matches your PostgreSQL table)
author_table = Table('author', metadata,

Column ('id', Integer, primary key=True),

Column ('first name', String(255)),

Column ('last_name', String(255))

Create a connection to the database
with engine.connect () as connection:
Create a select query to fetch all rows from the 'author' table
query = select([author_ table]) .where(author_ table.c.last name == 'Werner')

Execute the query
result = connection.execute (query)

Fetch and print all results
authors = result.fetchall ()

for author in authors:
print (f"ID: {author.id}, First Name: {author.first name}, Last Name: {author.last name}")

8 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬁF

9

From Code to Database Queries: How to Make Pythons and Elephants Dance Together
PyPika

Define the 'author' table using PyPika
author = Table('author')

Create a query to select all rows from the 'author' table
query = Query.from (Author).select('*').where (Author.last name == 'Werner')

Execute the query
cursor.execute (sql query)

Fetch and print all results
authors = cursor.fetchall ()

for author in authors:
print (f"ID: {author([0]}, First Name: {author[l]}, Last Name: {author[2]}")

Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬁ
b

From Code to Database Queries: How to Make Pythons and Elephants Dance Together
Records

SQL query to select all authors with last name 'Werner'
query = "SELECT * FROM author WHERE last name = :last name"

Execute the query and pass 'Werner' as the parameter for 'last name'

rows = db.query(query, last name='Werner')

Iterate through the results and print each author's details
for row in rows:

print (£"ID: {row['id']}, First Name: {row['first name']},
Last Name: {row['last name']}")

10 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬁ
o

Feedback to me, stefan.keller@ost.ch

What’s your experience?

appreciation suggestions
comments

22222

SWISS Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Pony ORM

Define the Author entity corresponding to the 'author' table
class Author (db.Entity):

id = PrimaryKey (int, auto=True)

first name = Required(str)

last_name = Required(str)

Use db_session to manage transactions
@db_session
Query to fetch all authors with last_name 'Werner'
def get authors by last name (last name) :
authors = select(a for a in Author if a.last name == last name) [:]

for author in authors:

print (£"ID: {author.id}, First Name: {author.first name},
Last Name: {author.last name}")

Call the function
get_authors_by last name ('Werner')

12 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬁF

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Databases

Function to connect to the database
async def connect to db():
await database.connect ()

Function to query all authors

async def get_ authors_with last name(last name) :
query = "SELECT id, first_name, last_name FROM author WHERE last_name = last_name“ # raw SQL style
#query = author table.select().where (author table.c.last name == last_name) # SQLAlchemy style
results = await database.fetch_all (query=query)

for author in results:
print (£"ID: {author['id']}, First Name: {author['first name']}, Last Name: {author['last name']}")

Main asynchronous function to connect, query (and disconnect)
async def main():
await connect_to _db() # Connect to the database
await get_authors_with last name ('Werner') () # Fetch and display all authors with last name Werner

asyncio.run(main())

13 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 (ﬁ;

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Peewee

Define the Author model corresponding to the 'author' table
class Author (Model) :

id = IntegerField(primary_ key=True)

first_name = CharField(max_length=255)

last_name = CharField(max_ length=255)

class Meta:
database = db # This model uses the 'library' database

Query the database to get all authors
def get_all authors():

authors = Author.select () .where (Author.last name == 'Werner')

for author in authors:

print (f"ID: {author.id}, First Name: {author.first name}, Last Name: {author.last_name}")

Call the function to fetch and display all authors
get_all authors()

14 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller 17.+18 October 2024 ﬁF

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Tortoise ORM

Define the Author model corresponding to the 'author' table
class Author (models.Model) :

id = fields.IntField (pk=True)

first_name = fields.CharField(max_length=255)

last_name = fields.CharField(max_length=255)

class Meta:
table = "author" # This model maps to the 'author' table

Function to query all authors with last_name "Werner"
async def get_authors_by last_name(last_name: str):
authors = await Author.filter(last_name=last_name)

Iterate through the results and print each author's details

for author in authors:
print (f"ID: {author.id}, First Name: {author.first name},

Main function to run the database operations
async def main():
await init() # Step 1: Connect to the database
await get_authors_by last name ("Werner") # Query all authors

asyncio.run(main())

15 | Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller

Last Name: {author.last name}")

17.+18 October 2024 e_

Hans Marki

Octoprobe, Testing with HIL

New FancyCam

e Your task:

o Write driver in C for micropython firmware
o On github, accept PullRequests from community
o Test matrix:

m 2 FancyCam HW

m 5 CPU boards

m 2 Micropython versions

m => 20 combinations to test!

Testing HIL (HW in the loop) | OCtO JelfelelS

pytest

jpirgstrycture

f

CIC

SRR S
A

o tentacle g

Step by step

7 Tentacles: 2 FancyCam, 5 CPU
test server: install octoprobe
write pytests

self hosted runner within github

github action which triggers on PR

probe

@ Octo probe tentacle 9

Daniel Szoke

Intro to Monkey-Patching

Intro to
Monkey-patching

Daniel Szoke

What is Monkey-patching? €

“‘Monkey patching in Python refers to dynamically modifying or extending a
class or module at runtime, allowing you to change its behavior.”

- ChatGPT

What is Monkey-patching? €

“‘Monkey patching in Python refers to dynamically modifying or extending a
class or module at runtime, allowing you to change its behavior.”

- ChatGPT

Let’'s see an example of how to monkeypatch to capture exceptions!

Imagine a server framework...

import my server framework

@my server framework.route('/")
def index () :
1/ 0 # Uh, oh!

return 'Hello, World!'

Somewhere in the server framework code

Somewhere in my server framework

handlers: dict[str, Callable] = {}

@my server framework.route registers handlers in dict
def request handler (path) :

handler = handlers[path]
handler () # <---- The function registered to the path

Now let’s patch in error SDK

error SDK
import my server framework .request handler

def patch request handler ():
old request handler = my server framework .request handler

def wrapper (*args, **kwargs):
try:
return old request handler(*args, **kwargs)
except Exception as e:
capture exception (e)
raise e

my server framework .request handler = wrapper # <---- &

patch request handler ()

Yay! Error got captured :)

import my server framework
import error sdk

error sdk.init ()

@my server framework.route('/"')
def index/() :

1/ 0 # Uh, oh!

return 'Hello, World!'

Niklas Mertsch

Jython + Mypy

Jython with mypy

Who here likes Python?

Who uses type annotations?

def f(a: str, b: str,

return (a + b) * c

Who uses static type checking?

def f(a: str, b: str, c: int) -> str:
return (a + b) * ¢

Who has to interact with
Java systems?

Jython:
Python 2.7 interpreter
In Java

from java.lang import System

System.out.println("Hello,

$ jython scripts/hello.py
Hello, world

Jython with mypy

def f{a: str, b: str,
return (a + b) * c

def f(a, b, c):
(str

return (a + b) * c

Jython with mypy

pip install 'mypy[python2]<06.980"'

def f(a: str, b:

return (a + b) * ¢

: invalid syntax

Jython with mypy

pip install 'mypy[python2]<06.980"'

import random

random.choices(["a",

Module has no attribute "choices"; maybe "choice"?

Java Packages

export JYTHONPATH=1ib/commons-collections4-4.5.0-M2.jar
from org.apache.commons.collections4 import ListUtils

numbers = [9, 6, 2, 6, 1, 6, 5]

for batch in ListUtils.partition(numbers, 2):
print(batch)

cat jython-stubs/org/apache/commons/collections4/__init__.pyi

from typing import TypeVar

T = TypeVar("T")

class ListUtils:
@staticmethod
def partition(items: 1ist[T], size: int) -> 1list[list[T]]:

):

for batch in ListUtils.partition(numbers,

(batch)
org.apache.commons.collections4.ListUtils

@staticmethod
def partition(items: [T],
size:) -> [[T]]

Returns consecutive sublist of a list, each of the same size

74

(the final list may be smaller).

Type stubs

for batch in ListUtils.partition(numbers):
print(batch)

$ mypy scripts/script.py jython-stubs/
Missing positional argument "size" in call to "partition" of "ListUtils"

Testing with Mocks

class ListUtils:
@staticmethod

def partition(items: 1ist[T], size: i
batches = []
batch = []

n org.apache.commons.collections4 import ListUtils
def t sartition() -> None:

chars = list("Python"

batches = ListUtils.partition(chars, 2)

assert batches == [["P", "y"], ["t", "h"], ["o",

$ pytest scripts/test.py --quiet

Timon Erhart

Don't use os.path

Don't use os.path !

Because since many years is a better way..

timon@python-summit.ch

timon.erhart@ost.ch

Whatis os.path?

import os

path = os.getcwd()

path = os.path.join(path, "file.txt")

print(path)

with open(path, "w") as f: # touch path
pass

os.rename(path, os.path.join(
os.path.dirname(path),"file2.txt"))
path = os.path.join(os.path.dirname(path), "file2.txt")
print(path)
print(
os.path.exists(path)

os.unlink(path) # remove file

/home/erti/LEHRE repos/ploting-with-python-slides/file.txt
/home/erti/LEHRE repos/ploting-with-python-slides/file2.txt
True

There is a better way!

« use pathlib (standard library!)
» object oriented

« since 3.14 (2014)

Why people using it still?

python concat path

Ale Videos Bider News Bicher Web Maps i Mehr

GeeksforGeeks
5 Diese :

Python | os.path.join() method
08.10.2024 — os.path.join() takes multiple path components as arguments and concatenates
them into a single path. It ensures the correct path separator is

Stack Overflow
hitps /istackoverfiow.com > questions > platform-indep.. §

Platform independent path concatenation using "/" , "\"?
In python | have variables base_dir and filename. | would like to concatenate them to obtain

fullpath. But under windows | should use \ and for POSIX /.

Concatenate path and filename - python - Stack Overflow 14. Nov. 2016

Python os.path.join() and "+" in string concatenation 6. Feb. 2022
File Path Concatenation - python - Stack Overflow 29. Juli 2021
6. Juni 2018

connecting multiple strings to path in python vith slashes
Weitere Ergebnisse von stackoverflow.com

Pytfon Docs
https:/idocs python.org » lirary - Diese Seite bersetzen

0s.path — Common pathname manipulations

all members of *paths, with exactly one directory separator ...

)

Q

Suchfilter

6 Antworten - Top-Antwort: You want to use os.path. oin() for this. The strength of using this rat...

Join one or more path segments inteligently. The retur value is the concatenation of path and

Example

from pathlib import Path

path = Path() # os.getcwd()
path = path / "file.txt" # os.path.join
path.write text("") # touch
print(
path.exists()# os.path.exists

path = path.rename("file2.txt") # os.rename
path.unlink() # os.unlink

True

old
import glob

for f in glob.glob(os.path.join(os.getcwd(), "*.txt")):
print(f, type(f)) # string

new
for file in Path().glob("*.txt"):
print(f, type(f))

/home/erti/LEHRE_repos/ploting-with-python-slides/requirements.txt <class 'str's
/home/erti/LEHRE_repos/ploting-with-python-slides/requirements.txt <class 'str's>

Further reads

« The official doks

= https://docs.python.org/3/library/pathlib.html

= come with an nice comparison with os.path (##corresponding-tools)
» Python 3 Module of the Week

= https://pymotw.com/3/pathlib/index.html

Radomir Dopieralski

Robots and MicroPython

Robots and MicroPython

Radomir Dopieralski
@deshipu@fosstodon.org

o i

Thank you!

https://deshipu.art/

Dave Halter

Mypy rewritten in Rust

Jedi Autocompletion

\NAJ
i JEDI

zubanls.com- Twitter/GitHub: @ZubanLS

2022
Mypy in Rust

e Passing 20% of Mypy's test suite
e Tests run 650x faster than Mypy

2024
Mypy in Rust

o Passing 20% 90% of Mypy's relevant tests
o Tests run 656x 230x faster than Mypy

Goal: ZubanLS

A Python Language Server written in Rust
zubanls.com

info@zubanls.com

Twitter/GitHub: @ZubanLS

zmypy

zmypy foobar --strict --warn-unreachable

0.9s vs 40s when type checking Mypy (no cache)
Single Thread (optimizable)

Supports most mypy flags and features
Reducing false positives

Outlook

Probably not Open Source (But fallback to Mypy)
zmypy is available very soon

Language Server hopefully in 2025

| am very interested to have a discussion

Questions?

e zubanls.com
e info@zubanls.com
e Twitter/GitHub: @ZubanLS

