ARTIFICIAL INTELLIGENCE

WHY EXPLANATIONS MATTER

Albert Weichselbraun University of Applied Sciences of the Grisons

AGENDA

Why explanations matter
Explainable Artificial Intelligence
Conclusions

WHY EXPLANATIONS MATTER

- Raise awareness of limitations
- Ethics and accountability

RAISE AWARENESS OF LIMITATIONS

Biases

Implicit biases in training data.

queen ~ king	sister ~ brother	mother ~ father
waitress ~ waiter	ovarian cancer ~ prostate cancer	convent ~ monastery
nurse ~ surgeon	registered nurse ~ physician	housewife ~ shopkeeper
giggle ~ chuckle	interior designer ~ architect	charming ~ affable
volleyball ~ football	cosmetics ~ pharmaceuticals	diva ~ superstar

(Examples from Bolukbasi et al, 2016)

4

RAISE AWARENESS OF LIMITATIONS

Issues: Benign Conditions

RAISE AWARENESS OF LIMITATIONS

Issues: Benign Conditions

(Source: Sitawarin et al, 2018)

ETHICS AND ACCOUNTABILITY

Fundamental principles relevant to Artificial Intelligence

- 1. Explainability
- 2. Justice
- 3. Non-maleficence

7

4. Autonomy

ETHICS AND ACCOUNTABILITY

Predictive sentencing (Starr, 2013)

Predictive sentencing involves a prediction of the risk or threat to society by the offenders and of the reaction of different types of offenders to different types of treatment modalities.

- COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)
- Accuracy: 0.71
- Algorithm uses features such as poverty, postal codes and employment status → highly correlated with minorities

ETHICS AND ACCOUNTABILITY

What is fair?

- literature defines many different kinds of fairness
 - e.g., group unaware, group thresholds, demographic parity, equal opportunity, equal accuracy, etc.
- first step: determine the "kind of fairness" you aim for
 - this is a decision that needs to be made by humans
 - determines the design goals for the AI
 - additional information: Google What-if-tool AI Fairness

EXPLAINABLE ARTIFICIAL INTELLIGENCE

Explainability versus interpretability
Approaches and limitations

EXPLAINABILITY VERSUS INTERPRETABILITY

- Interpretable models: can be understood by humans without any other aids/methods
 → examples: linear regression (two or three model parameters), decision trees, symbolic AI
- Explainable models: need additional techniques to be "understood" by human (post-hoc explanations)
 - ightarrow GPT-3 model 175 billion parameters

APPROACHES AND LIMITATIONS

Post-hoc Explanations

Local Interpretable Model-Agnostic Explanations (LIME)

- explain singular predictions
- instability (explanations may vary between runs)

Local Interpretable Model-Agnostic Explanations (Source: Ribeiro et al., 2016)

APPROACHES AND LIMITATIONS

Post-hoc Explanations

Local Interpretable Model-Agnostic Explanations (LIME)

(Source: Ribeiro et al., 2016)

APPROACHES AND LIMITATIONS

Post-hoc Explanations

SHAP (SHapley Additive exPlanations)

- explain singular predictions
- illustrate the contribution of each feature to the overall result
- reliability issues (SHAP values)

CONCLUSIONS

CONCLUSIONS

- Why explanations matter?
 - help in understanding model limitations
 - provide insights into ethical issues
- Explainable AI
 - models are too large to be interpretable
 - post-hoc explanations \rightarrow issues with reliability and helpfulness
 - still a major research challenge

