
Sadhana Srinivasan

A Walk with
CPython

Who am I?

• I am a data scientist

• I really like CPython
and got into it because
of an old project of
mine

• You can find me on
LinkedIn (/sadhana-
srinivasan/)

https://www.linkedin.com/in/sadhana-srinivasan/

What is
CPython?

• .py files need to be
translated to run on a
system

• There are alternatives
such as PyPy,
IronPython, Stackless

What can you
expect today?

A quick intro
The talk aims to give you an
understanding with which
you can dive into the
CPython codebase yourself.

You will not be an expert but
you will not be entirely lost in
the codebase.

There are references at the
end of the slides

What are the
complier’s
steps?
What happens after python
reads the program?

How does tokenisation, AST
building etc. happen?

What does the interpreter
get?

What does the
interpreter do?
What does the interpreter do
with the input?

What are some of the
optimisations it has?

Compiler!? Interpreter,
right?

The Program

The Steps

Tokeniser &
Parser
Break the input string into
recognisable parts.

Parse it into an AST

AST to CFG*
The AST is a representation
of the program. This need to
be flattened into OPCODES.

CFG to
OPCODES
Flatten the CFG into
OPCODES

The
Tokeniser

The tokeniser converts the
code into meaningful
chunks.

It also find out if you’ve
used any character that
isn’t accepted.

Image Source: https://benjam.info/blog/posts/2019-09-18-python-deep-dive-tokenizer/

The
Tokeniser

python -m tokenise <file.py>

The Parser

The Parser is where a lot of
the syntax checking
happens.

The Parser creates the
Abstract Syntax Tree.
Which is then converted
into a CFG and flattened
into an OPCODE list.

The AST

The Abstract Syntax Tree is a representation of
the source code.

 Each node in the AST represents a
statement/expression or other specialised type
like a list comprehension.

Sometime the Parser accepts statements that are
syntactically wrong.

This is done to give better errors.

The CFG

The Control Flow Graph is a representation of the
flow of a program.

The AST is converted to OPCODEs and a CFG.
Which is then flattened for the interpreter

Each node is a list of bytecode that is always
executed sequentially.

The CFG

The complexity of our program reflects rather
heavily on our CFG....

The Complier Output

The Interpreter

Steps in the interpreter

Get OPCODE
Generate the list of code

blocks that need to be run.

Compute GOTO
Switch Case or GOTO? We

feel the need for speed right
now.

Execute
The final step, the bit we

really care about.

OPCODES?

Computed GOTOs

Once a command has
been completed, head
to FAST_DISPATCH to
find out where to go
next.

01
Jump to the correct
block of code for the
current OPCODE

02

Specialising Adaptive Interpreter
(PEP 659)

• The interpreter adapts to the program that is being run after some warm
up

• The general bycode instruction has a warm up counter
• The specialised instruction has a miss counter

Eg. BINARY_OP and BINARY_OP_ADD_INT

Let’s execute The
Program

Frames?

Frames?

Stack

Frames?

A
Frame

The Program

Global Frame

Global
Frame

Squar
e

Global
Frame

2

Prin
t

Squar
e

Global
Frame

Square

2

Prin
t

Squar
e

Global
Frame

2

Square

2

Prin
t

Squar
e

Global
Frame

2

return
value

4

Square

2

Prin
t

Squar
e

Global
Frame

4

Print

2

Prin
t

Squar
e

Global
Frame

2

Prin
t

Squar
e

>>> 4

The End

