A Walk with
CPython

Sadhana Srinivasan

* | am a data scientist

* | really like CPython

Who am I? and got into it because

of an old project of
mine

* You can find me on
LinkedIn (/sadhana-
srinivasan/)

https://www.linkedin.com/in/sadhana-srinivasan/

What is
CPython?

* .py files need to be
translated to runon a
system

* There are alternatives
such as PyPy,
IronPython, Stackless

What can you
expect today?

A quick intro

The talk aims to give you an
understanding with which
you can dive into the
CPython codebase yourself.

You will not be an expert but

you will not be entirely lost in
the codebase.

There are references at the
end of the slides

What are the
complier’s
steps?

What happens after python
reads the program?

How does tokenisation, AST
building etc. happen?

What does the interpreter
get?

What does the
interpreter do?

What does the interpreter do
with the input?

What are some of the
optimisations it has?

-

Compiler!? Interpreter,

right?

def square(num):
The Program return numsknum

print(square(2))

The Steps

Tokeniser &
Parser

Break the input string into
recognisable parts.

Parseitinto an AST

AST to CFG*

The AST is a representation
of the program. This need to
be flattened into OPCODES.

CFG to
OPCODES

Flatten the CFG into
OPCODES

The
Tokeniser

The tokeniser converts the

code into meaningful
chunks.

It also find out if you’ve
used any character that
isn’t accepted.

\

Yes
is_potential_identifier_start(c) — -

Is the next character a letter or underscore?

INo

‘ Yes

C=‘= l\nl q...

Is it a newline?

INo

LAY

‘ Yes

c == "\"! ” c == '"m q e

Is it a quote?

No

cee (diagram is heavily simplified)

Image Source: https://benjam.info/blog/posts/2019-09-18-python-deep-dive-tokenizer/

0,0-0,0: ENCODING 'utf-8'
1,0-1,3: NAME "def’
1,4-1,10: NAME 'square’
1,10-1,11: oP C
1,11-1,14: NAME "num’
1,14-1,15 oP DY
1,15-1,16: oP .
1,16-1,17: NEWLINE "\n'
2,0-2,4: INDENT ' '
2,4-2,10: NAME 'return’
The 2,11-2,14: NAME 'num’
2,14-2,15: opP Tk
2,15-2,18: NAME "num’
- 2,19-2,20: NEWLINE "\n'
oKehniser 3.0-3,1: NL \n'
4,0-4,0: DEDENT v
4,0-4,5: NAME 'print’
4,5-4.6: opP ¢
4,6-4,12: NAME 'square’
4,12-4,13: oP ¢
4,13-4,14: NUMBER 2
4,14-4,15: opP DY
4,15-4,16: oP DY
4,16-4,17: NEWLINE A
5,0-5,0: ENDMARKER v
python -m tokenise <file.py>

The Parser

The Parser is where a lot of
the syntax checking
happens.

The Parser creates the
Abstract Syntax Tree.
Which is then converted
into a CFG and flattened
into an OPCODE list.

The AST

The Abstract Syntax Tree is a representation of
the source code.

Each node in the AST represents a
statement/expression or other specialised type

like a list comprehension.

Sometime the Parser accepts statements that are
syntactically wrong.

This is done to give better errors.

The CFG

The Control Flow Graph is a representation of the
flow of a program.

The AST is converted to OPCODEs and a CFG.
Which is then flattened for the interpreter

Each node is a list of bytecode that is always
executed sequentially.

def square(num):...
print(square(2))

The CFG

|
lballs

print

The complexity of our program reflects rather
heavily on our CFG....

The Complier Output

1 @ LOAD_CONST @ (<code object square at 0x1013c4a80@, file "sqaure.py", line 1>)

2 LOAD_CONST 1 ('square')

4 MAKE_FUNCTION 0

6 STORE_NAME @ (square)
4 8 LOAD_NAME 1 (print)

10 LOAD_NAME @ (square)

12 LOAD_CONST 2 (D

14 CALL_FUNCTION 1

16 CALL_FUNCTION 1

18 POP_TOP

20 LOAD_CONST 3 (None)

22 RETURN_VALUE

Disassembly of <code object square at 0x1013c4a80, file "sqaure.py", line 1>:

2 @ LOAD_FAST @ (num)

2 LOAD_FAST @ (num)

4 BINARY_MULTIPLY
6 RETURN_VALUE

-

The Interpreter

Steps in the interpreter

Get OPCODE Compute GOTO Execute
Generate the list of code Switch Case or GOTO? We The final step, the bit we
blocks that need to be run. feel the need for speed right really care about.

now.

main_Lloop:
for (53) {

assert(stack_pointer >= f->f_valuestack); /* else underflow x/

assert(STACK_LEVEL() <= co->co_stacksize); /x else overflow x/

assert(!_PyErr_Occurred(tstate));

switch (opcode) {

/* BEWARE!
It is essential that any operation that fails must goto error
and that all operation that succeed call [FAST_]DISPATCH() ! %/

case TARGET(NOP): {
FAST_DISPATCH();

}

case TARGET(LOAD_FAST): {

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL (oparg);
if (value == NULL) {
format_exc_check_arg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));

goto error;
¥
Py_INCREF(value);
PUSH (value) ;
FAST_DISPATCH() ;

Disassemt
2

0

AN

8
10
12
14
16
18
20
22

ly of <code object square

0
2

4 BINARY_MULTIPLY

6

LOAD_CONST
LOAD_CONST
MAKE_FUNCTION
STORE_NAME

LOAD_NAME
LOAD_NAME
LOAD_CONST
CALL_FUNCTION
CALL_FUNCTION
POP_TOP
LOAD_CONST
RETURN_VALUE

LOAD_FAST
LOAD_FAST

RETURN_VALUE

@ (<code object square at 0x1013c4a80, file "sqaure.py", line 1>)

1 ('square')
(7]
@ (square)

1 (print)
@ (square)
2 (2

1

1

3 (None)

at 0x1013c4a80, file "sqaure.py", line 1>:

@ (num)
@ (num)

Computed GOTOs

O1

Once a command has
been completed, head
to FAST_DISPATCH to
find out where to go
next.

02

Jump to the correct

block of code for the
current OPCODE

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL (oparg);
if (value == NULL) {
format_exc_check_arg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));

goto error;
:
Py_INCREF (value);
PUSH(value) ;
FAST_DISPATCH();

Specialising Adaptive Interpreter
(PEP 659)

« The interpreter adapts to the program that is being run after some warm

up
« The general bycode instruction has a warm up counter
» The specialised instruction has a miss counter

Eg. BINARY_OP and BINARY_OP_ADD_INT

™

Let's execute The

Program

Frames”?

B

Frames”?

Frames”?

def square(num):
The Program return numsknum

print(square(2))

)
T

Global Frame

Global
Frame

Squar

Global
Frame

Prin

SqBar

Square

Prin

Squar

Global

Square

Prin

Squar

Global

Square

return
value

Prin

Squar

Global

Print

Prin

Squar

Global

Prin

SqBar
e

Global
Frame

743 #ifndef Py_DEFAULT_RECURSION_LIMIT

744 #define Py_DEFAULT_RECURSION_LIMIT 10060
745 #endif

