A Short History of Python

Web Frameworks

Quazi Nafiul Islam

Q
\\‘

® @wgamesbrainiac
® @nafiul@fosstodon.org

€ sonar

Geneslis

TYLKING HEYDS

ONCE IN A LIFETIME

And you may ask yourself, "How do I work this?"

And you may ask yourself, "Where is that large automobile?"
And you may tell yourself, "This is not my beautiful house"
And you may tell yourself, "This is not my beautiful wife"

And you may ask yourself, "How do I work this?"

And you may ask yourself, "Where is that large class?"

And you may tell yourself, "This is not my beautiful code'
And you may tell yourself, "This is not my beautiful server"
How did I get here?

ONE DOES NOT'SIMPLY

‘@?m AYAK

I nerdsniped myself.

[started investigating something that had nothing to
do with what I was supposed to be doing.

I learned a lot along the way.
[felt incredibly guilty.
So, here’s a talk about what I learned.

Forgive me developers, for I have yak shaved.

ENE W
1/

. Ity
LN LIE By

HIS WAL 4pe

' f:y 3“"'\ .
8 b THeh 'an‘.'
J N\

HTTP [1989]

(Connection 1 Establishment - TCP Three-Way Handshake)

Connected to ;

(Request)

GET /my-page.html

(Response in hypertext)

(Connection 1 Closed - TCP Teardown)

1991: HTTP 0.9 (Look Ma! No Headers!)

Request

GET /4848 HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.01 (X11; I; Sun0S 5.4 sundm)

Pragma: no-cache
Host: tecfa.unige.ch:7778
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Response

HTTP/1.0 200 OK

Date: Fri, 08 Aug 2003 08:12:31 GMT

Server: Apache/1.3.27 (Unix)

MIME-version: 1.0

Last-Modified: Fri, 01 Aug 2003 12:45:26 GMT

Content-Type: text/html
Content-Length: 2345

** a blank line *
<HTML> ...

1991: HTTP 1.0 with Headers!

Request

POST / HTTP/1.1

Request headers

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Content-Type: multipart/form-data; boundary=-12656974
Content-Length: 345

General headers

Representation
headers

-12656974
(more data)

Response

HTTP/1.1 200 OK

Response headers
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Date: Wed, 10 Aug 2016 13:17:18 GMT i headers

Representation

Keep-Alive: timeout=5, max=999 General headers
Last-Modified: Wed, 10 Aug 2016 05:38:31 GMT ;

Transfer-Encoding: chunked

1991: HTTP 1.1: What we mostly use today

New HTTP Methods: New verbs
introduced such as OPTIONS, PUT,
DELETE and TRACE

Byte Ranges: You could now request
specific byte ranges.

Connection Persistence: Multiple HTTP
requests could be sent over a single
connection. (Keep-Alive)

Chunked Transfers: Can now start
sending data without knowing the full

size.

We want
dynamic content

Sends in

o
¥ APACHE environment Bl
HTTP SERVER PROJECT VariableS. ’
o

—

- [—~

Forking
for every
request

2

Input:
QUERY_STRING: z=1&m=2
HTTP_HOST: www.Sonar.com
PATH_INFO: /bug/info/report

S

mod_cgi

[
P ARAGHE),
D

o

Output:

print(“Bug Not Found”)

http://www.sonar.com

<form action =“/cgi-bin/login.py” method=“post”>
<input type="text" name="firstname" required>
<input type="text" name="lastname" required>
<input type="email" name="email" required>
<input type="password"” name="password" required>
<input type="submit" value="Login!">

</form>

Zope |1999]

LOO'K! UP IN THE SKY!

" ﬂg -

2)Z0P

Zope: The Web CMS that did everything

Zope is a [ramework that allows
developers of varying skill levels to build
web applications. — The Zope Book

All the following images are from “The
Zope Book” by Amos Latteier and Michel
Pelletier

Zope 2.5.1 Installation E

Welcome!

This installation program will install Zope 2.5.1.

Press the Next button to start the installation. YYou can press
the Cancel button now if you do not want to install Zope 2.5.1

at this time.

Figure 2-2 Beginning the installer

Zope: The Web CMS that did everything

Cancel

Zope 1 was very short
lived. Most people
started with Zope 2.
Zope 1 was originally
called Principia

ample

y_folder

© Zope Corporation
Refresh

http://localhost:8080/Sales/...

Zope: The Web CMS that did everything

Security

Help!

Title Content-Type [ext/himl
Browse HTML source

Last Modified
r Expand macros when editing

an tal:repla
ondi

This is Page Template <em tal:conte
</body>
< /html>

Figure 4-4 Default Page Template Content

<dtml-var standard_html_ header>

<dtml-if zooName>

<p><dtml-var zooName></p>

<dtml-else>
<form action="<dtml-var URL>" method="GET">
<input name="zooName">
<input type="submit" value="What is zooName?">
</form>

</dtml-if>

<dtml-var standard html footer>

Zope: DTML (Document Template Markup Language)

L6555 in 2= admin: | Zop=

Add File Help!

* i Control_Panel

‘DE

a file

© Zope Corporation

Refresh @ £ B~

Figure 4-1 Adding a PDF File Object

Zope: The Web CMS that did everything

Add Z Psycopg Database Connection

[#8) Control_Panel

’ y Examples 1d Psycopg_database_connection
@ acl_users Title Z Psycopg Database Connecln
¥ temp_folder =

= Enter a Database Connection String 1 |dbname=testuser=andrew

30 www
© Zope Corporation

Refresh

Connect immediately

Use Zope's internal Dz
module (instead of mxDat
PyGreSQL emulation mode

! Connection Strings

The connection strin
connection strings rgq\nrud by posgresq
form:

Figure 17-1 PostgreSQL Database Connection

Zope: The Web CMS that did everything

Logged in as manager

M Root Folder Status Properties Test Security Undo Ovmership Browse

& 11;5] ~ontrol_Panel
J Z Gadfly Database Connection at /Gadfly_database_connection
= B EMPLOYEES
TABLE
3] EMP_ID INTEGER(Q) with Null
with Null
LAST VARCHAR(0) with Null
SALARY FLOAT(0) with Null

Figure 17-3 Browsing the Database Connection

Zope: The Web CMS that did everything

Zope is called Zope because it is the Z Object
Publishing Environment.

Everything was an object. Pages, Templates, Python
Scripts, DTML. All of it was stored in ZODB.

Zope 2 was perhaps one of the
most influential open source
projects. Ever. But Zope 3 began
the downtfall of Zope

Potala
Palace

Zope: The Web CMS that did everything

All or Nothing. Zope did everything, and wasn’t
modular. People started building things that were
slightly better. It was way ahead of its time.

People wanted to use the goodies in from Zope 3 in
Zope 2, so they used five (3+2).

\

 Menvwnic..

Ko o

Quixote |2000]

from quixote.html import html_quote
from splat.web.util import get_bug_database
def _g_index (request):
result = ["""\
<html>
<head><title>SPLAT! Bug Index</title></head>
<body>
<table>
<tr>
<th>bug id</th>
<th>description</th>
</tr>
"
bug_db = get_bug_database()
for bug in bug_db.get_all_bugs():
if bug.status != bug.ST_RESOLVED:
result.append("""\
<tr>
<td>%s</td>
<td>%s</td>
</tr>
""" % (bug, html_quote(bug.description))
result.append("""\
</table>
</body>
</html>
")

return .join(result)

from quixote.html import html_quote

from splat.web.util import get_bug_database

def _g_index (request):

result = ["""\

<html>
<head><title>SPLAT! Bug Index</title></head>
<body>
<table>

Entry <tmh b d</th
. <th>bug id</th>
Point

<th>description</th>
</tr>
"]
bug_db = get_bug_database()
for bug in bug_db.get_all_bugs():
if bug.status != bug.ST_RESOLVED:
result.append("""\
<tr>
<td>%s</td>
<td>%s</td>
</tr>
""" % (bug, html_quote(bug.description))
result.append("""\
</table>
</body>
</html>
")

return .join(result)

Most Frameworks
have HTML as a
default. Quixote

inverted that. JSX

wasn’t the first of
its kind.

template bug_row (bug):

"\
<tr>
<td>%s</td>
<td>%s</td>
template header (title): </tr>
"\ "t % (bug, html_quote(bug.description)
<html>
<head><title>SPLAT! - %s</title></head> template _g_index (request, bug):
<body> header("Bug Index")
""" % html_quote(title) "\
<table>
template footer (): <tr>
"\ IEIltITV <th>bug id</th>
</table>]?()iflt <th>description</th>
</body> </tr>
</html>

bug_db = get_bug database()
for bug in bug db.get_all bugs():
if bug.status != bug.ST_RESOLVED:
bug_row(bug)
"</table>\"
footer()
——

Credit: Greg Ward

Quixote never
really took off.

\

 Menvwnic..

Ko o

Webware for Python |2000]

Forking
for every
request

—

P ARAGHE

Can handle
multiple
concurrent
requests

- -

/,\ &

jetty://

S

Browser

8086
WebKit
(application server)

Filesystem

Webware for Python: The Java Stack but in Python

Browser

Multi-threaded

application

Server

S

_ .
WebKit
(application server)

Filesystem

Webware for Python: The Java Stack but in Python

Browser

This would pass

along the
request to the & i
stto WebKit
Application (application server)
Server

Filesystem

Webware for Python: The Java Stack but in Python

Browser

Development S :
E WebKit
(application server)

Filesystem

Production

Webware for Python: The Java Stack but in Python

from WebKit.Page import Page XML-RPC

class HelloWorld(Page):
def writeContent(self):
self.writeln('Hello, world!"')

Templating
Language

Webware for Python: The Java Stack but in Python

from WebKit.Page import Page .B
rowser

ValidationError = 'ValidationError'

class Test(Page):
def writeContent(self,msg=""):
self.writeln('""'
%S

<form method="Post" action="Test">
<input type="text" name="valuel">
<input type="text" name="value2">
<input type="submit" name="_action_add" value="Add">
<input type="submit" name="_action_multiply" value="Multiply">
"' % msg)

actions(self):
return Page.actions(self) + ["add", "multiply"] (2)

validate(self):
req = self.request() i “ 3
if not req.field('valuel') or not req.field('valuel'):(3) | WebKit.ogi 1 mod__webklt
raise ValidationError, "Please enter two numbers." e e S
try:
valuel = float(req.field('valuel')) (4)
value2 = float(req.field('value2'))
except ValueError: 8086 8086
raise ValidationError, "Only numbers may be entered." S
return (valuel, value2) WebK]t

add(self): (5) (application server)

try:
valuel, value2 = self.validate()
self.write("<body>The sum is %f
" % (valuel + value2))
self.write('Play again</body>"')
except ValidationError, e: v
Templating

self.writeContent(e) i
anguage

def multiply(self): (5)
fef piyiselDe Servlets PSPs
valuel, value2 = self.validate()
self.write("<body>The product is %f
" % (valuel + value2)) 3
self.write('Play again</body>"')
except ValidationError, e: Fl]eg}IStem
self.writeContent(e)

Webware for Python: The Java Stack but in Python

Files Overview

Videos/
Middle/
generatex
createx
insertx
Videos.mkmodel/
Classes.csv
Samples.csv
Settings.config
GeneratedPy/
GenVideo.py, GenMovie.py, ...
GeneratedSQL/
Create.sql
InsertSamples.sql
Info.text
Video.py
Movie.py
Command/
main.py

videos = store.fetchObjectsOfClass('Video')

- # Get all videos that start with 'A':
(L - - - . . . - 5 =

T T T TS RS T videos = [video for video in videos if video.title().upper().startswith('A')]
;$2?;;tg?in§§§:(1, os.path.abspath(os.pardir))

from datetime import date
from MiddleKit.Run.MySQLObjectStore import MySQLObjectStore
from Middle.Movie import Movie

def main():
Set up the store
store = MySQLObjectStore(user='user', passwd='password')
store.readModelFileNamed('../Middle/Videos"')

movie = Movie()
movie.setTitle('The Terminator')
movie.setYear(1984)
movie.setRating('r')
store.addObject(movie)
store.saveChanges ()

if __name_ =='__main__"':
main()

Webware for Python: Middlekit (ORM)

Python files
inside HTML

Declaring
Python classes in
HTML

Good old for
loops in HTML!

Webware for
Python still is
actively
maintained.

Interlude

Web Server Application

Server
Caddy’

THE ULTIMATE SERVER

FES 3

Sunicorn

#ARACHE WSGH

HTTP SERVER PROJECT

. . Forwards requests, and handles
Getting requests and handling 5 :
static content. Also handles SSL HISEANICES Of.ﬂl < .Fr ik
applications

The Modern Request Pipeline: Things are Coalescing

Web
Framework

JEL e[

Houses the Application Code

WSGI |2001]

WI-7-Gl

Web Server Gateway Interface:
Final version in 2003

This is the callable that is passed into the

/ WSGI server.

def simple_app(environ, start_response):
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]
start_response(status, response_headers)

return []

Similar to CGI, this passes information

/ like REQUEST_METHOD, QUERY_STRING

def simple_app(environ, start_response):
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]
start_response(status, response_headers)

return []

The callable that is used to create the

/ response.

def simple_app(environ, start_response):
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]
start_response(status, response_headers)

return []

def simple_app(environ, start_response):

Simplest possible application object
status = '200 OK'
response _headers = [('Content-type', 'text/plain')]

Iresponse = your_view_Function(environ)I

start_response(status, response_headers)

ﬁ return [r‘esponse]l

This function is provided by the WSGI
server itself. So a server like gunicorn
will have this available for you.

def hello_view(environ, start_response): def application(environ, start_response):
A view function that returns "Hello World". The WSGI callable. It routes requests based on the URL path.
status = '200 OK' path = environ.get('PATH_INFO', '')

headers = [('Content-type', 'text/plain')]

start_response(status, headers) if path == '/hello':
return [b"Hello World"] return hello_view(environ, start_response)
elif path == '/goodbye"':

p: . . B . .
deiliseodby R S (Ch ool BRSO return goodbye_view(environ, start_response)

else:

A view function that returns "Goodbye World". status = '404 Not Found'

headers = [('Content-type', 'text/plain')]

- K
status 990 start_response(status, headers)

headers = [('Content-type', 'text/plain')] return [b"404 - Not Found"]

start_response(status, headers)

CherryPy |2002]

CherryPy is in
between a compiler
and an application
server.

CherryClass Root:
mask:

def index(self, name="you"):

<html><body>
. Hello, <b py-eval="name"> !

This mask allowed . . o .
you Lo use <form|py-attr="request.base"| action="" method="get">
CherryPy’s Enter your name: <input name=name type=text>

templating <input type=submit value=0K>
language.

</form>
</body></html>

& cherrypy / cherrypy Pubiic Q sponsor £ Notifications % Fork 351 % star 17k

<> Code (O Issues 232 {7 Pullrequests 17 U)) Discussions (Actions [Projects 3 [wiki

Commits

¥ main ~

-0- Commits on Aug 4, 2023

Add security disclosure doc. Closes #1941.

d Verified @ ooseed1 <>
S jaraco comm nAug 4 X
=3 com

-0- Commits on May 4, 2023

¥ Enable secretless GHA publishing to (Test)PyPI Verified © cabdiza <>
& webknjaz committed on May 5 X

CherryPy is still alive, and moved
to WSGI 1n 2005. It 1s not

compatible with ASGI.

CherryPy: Remind you of JSX?

After 2005, it was
never the same
again.

2005

You U YouQE) YouT1)

You) @ YouTube

TurboGears |2005]

Integrated Full-Stack
Framework: ActiveRecord,
ActiveView and
ActiveController

Scaffolding tools and
Generators

Database Migrations

Clear “Best
Practices”: Good new
newcomers

Convenience over
RESTful Configuration:
Development Sensible Defaults

Great Docs: More and
more tools live and
die by the quality of

docs

l about docs community | download blog '

TurboGears is the rapid web
development megaframework you've
been looking for.

TurboGears

Mochikit

from sqlobject import *

from datetime import datetime

class Person(sQLObject): >>> p = Person(firstName="John", lastName="Doe")

>>> p

firstName = StringCol(length=100) <Person 1 firstName='John' middleInitial=None

middleInitial = StringCol(length=1, default=None) lastName='Doe' lastContact='datetime.datetime...

lastName = StringCol(length=100) >>> p.lastContact

lastContact = DateTimeCol(default=datetime.now) datetime.datetime(2005, 9, 16, 9, 28, 7)
.)))))

>>> p.firstName
'John'

The ORM: Uses an ActiveRecord
Pattern. This meant that each record
could perform CRUD operations
because the objects containers both
data and behaviour.

>>> p.middleInitial = 'Q'
>>> p.middleInitial

Q"

>>> p2 = Person.get(1)
>>> p is p2

True

/ SQLObject

Controller and View Layer

Mochikit

import cherrypy
class MyRoot:
@cherrypy.expose()

def index(self, who="World"):
return "Hello, %s!" % (who)

print "<table>"
for person in people:
print "<tr>"

. The Templating Engine
print "<td>%s</td>" % (person.name)
print "</tr>"
print "</table>" S

Mochikit

<table>
<tr py:for="person in people">
<td>Kevin Bacon</td>
</tr>
</table>

There are /ots of JavaScript libraries out there. One of the first things you'll notice
about MochiKit is that you're not left guessing about how to use it or what's in
there. Unlike the vast majority of JavaScript libraries, there is z

describe how to use it.

The JavaScript Library that
helps with AJAX

SQLObiject

TurboGears: The Stack

TurboGears initially used CherryPy’s
server, which was HTTP 1.1 compliant.
But later on moved onto WSGI when it

gained traction as did many other
frameworks.

TurboGears: The Stack

@ Yippie
2005-11-09 15:56:13 vdubberly [Reply | View]

Been looking for a replacement for that sick joke of a language we call PHP.

Considered Ruby because of all the hype about Ruby on Rails as of late but mod_ruby really looks way to
immature to risk running and FastCGI is just way to dated.

Looks like this tool has a bright future based on solid foundations and Python of course has an excellent track
record. Every python user I've spoken with has nothing but praise for the language.

Party time!

m i .
*" Yippie
2005-11-10 02:19:57 davidheinemeier hansson [Reply | View]

What makes FastCGI dated in your eyes? It's providing the backing for the millions of dynamic requests
that the major Rails applications are processing every day (like Basecamp, Backpack, 43things, 43places,
Strongspace, ODEO, A List Apart, etc, etc).

If you're having trouble installing mod_fastcgi on Apache, then lighttpd is definitely recommended. It's a
fast, nimble alternative to Apache that's gaining rapid traction and it ships with FCGI support in the box.

But in case FastCGI shouldn't be doing it for you, for some reason or other, do check out the SCGI bindings
for Rails. They're considerably easier to install and work with Apache2.0 among other things.

So pick TG because you like its flavor of development better. Not over misconceptions about deployment.

TurboGears: The Comments!

. o® . .
Adrian Holovaty Yippie
2005-11-10 02:19:57 davidheinemeier hansson [Reply | View]

What makes FastCGI dated in your eyes? It's providing the backing for the millions of dynamic requests
that the major Rails applications are processing every day (like Basecamp, Backpack, 43things, 43places,
Strongspace, ODEO, A List Apart, etc, etc).

= ¥ adrian Holovaty in 2009 If you're having trouble installing mod_fastcgi on Apache, then lighttpd is definitely recommended. It's a
Born 1981 (age 41-42) fast, nimble alternative to Apache that's gaining rapid traction and it ships with FCGI support in the box.
Naperville, lllinois
Nationality ~ American But in case FastCGI shouldn't be doing it for you, for some reason or other, do check out the SCGI bindings

Alma mater Missouri School of Journalism for Rails. They're considerably easier to install and work with Apache2.0 among other things.
(B.A., 2001)

Occupation(s) web developer, journalist,
entrepreneur

So pick TG because you like its flavor of development better. Not over misconceptions about deployment.

Known for Django Web framework R
Django
2005-11-09 21:49:18 adrian_h [Reply | View]

I'd highly recommend checking out Django -- see djangoproject.com. Also written in Python, although
open-sourced a couple of months before TurboGears, Django offers more functionality, such as an
automatically-generated, production-ready admin interface and a proven track record running several
excellent Web sites (chicagocrime.org, lawrence.com, ljworld.com).

Quite a few PHP users have switched over to Django recently. :)

Full disclosure: I'm a Django developer.

A New Framework

A NOTHEHR

Django |2005]

django

Home Download Documentation

Weblog

Community Code

Django makes it easier to build better Web apps more quickly and with less code.

Meet Django

Django is a high-level Python Web framework that
encourages rapid development and clean, pragmatic
design.

Developed and used over the past two years by a newspaper Web
operation, Django is well-suited for developing content-management
systems. It was designed from scratch to handle the intensive
deadlines of a newsroom and the stringent requirements of experienced
Web developers. It focuses on automating as much as possible and
adhering to the DRY principle.

Dive in by reading the overview —

When you're ready to code, read the installation guide and tutorial.

The Django framework

Object-relational mapper

Define your data models entirely in Python. You get a rich, dynamic
database-access API for free — but you can still write SQL if needed.
URL dispatcher

Design pretty, cruft-free URLs with no framework-specific limitations.
Be as flexible as you like.

Template system

Use Django's powerful and il to
design, content and Python code.

Cache system

Hook into memcached or other cache frameworks for super caching —
as granularly as you need.

Automatic admin interface

Save yourself the tedious work of creating interfaces for people to add
and update content. Django does that automatically.

Django: Django all the way down!

Download Weblog

Source code to djangoproject.com
now available
by Adrian on July 19, 2005

Get current version: 1.0

Documentation
Tutorial
Template language guide

We've made available the full Django
source code and templates that power
API reference this site...

Read more / 0 comments
Sites that use Django
chicagocrime.org

A freely browsable database of
crimes reported in Chicago.

Third tutorial is up
by Adrian on July 19, 2005

The round of official tutorials continues,
with part 3 focusing on writing public

lawrence.com .
views...

An internationally renowned
local-entertainment site with
events, stories, bands, drink
specials and more.

Read more / 0 comments

LIWorld.com
An industry-leading newspaper
site.

KUSports.com
The bible for University of
Kansas sports fans.

lawrencechamber.com
A Chamber of Commerce site
that doesn't suck.

KKCScountry.com
A radio station site in Colorado
Springs.

How to use Django with mod_python

Apache with mod_python currently is the preferred setup for using Django on a production server.

mod_python is similar to mod_perl : It embeds Python within Apache and loads Python code into
memory when the server starts. Code stays in memory throughout the life of an Apache process,
which leads to significant performance gains over other server arrangements.

Django requires Apache 2.x and mod_python 3.x.

Django: It didn’t use WSGI to start with

from django.conf.urls.defaults import *

urlpatterns = patterns('’,
(r'~/articles/(?P<year>\d{4})/$', 'myproject.news.views.year_archive'),

(@l /articles/(?P<year>\d{4})/(?P<month>\d{2}) /% 1Y s]gek =Iet s [T SIRVA RIS o] o ol NI Tolel HAYZIED IS

(r'~/articles/(?P<year>\d{4})/(?P<month>\d{2})/(?P<article_id>\d+)/$', 'myproject.news.views.article detail'),

def article_detail(request, year, month, article_id):
Use the Django API to find an object matching the URL criteria.
a = get_object_or_404(articles, pub_date__year=year, pub_date__month=month, pk=article_id)
return render_to response('news/article detail', {'article': a})

Added WSGI support. Created core.handlers package. Moved ALL mod_pyth...
.on-specific code to django.core.handlers.modpython. Note that django.core.handler is still a valid mod,

git-svn-id: http://code.djangoproject.com/svn/django/trunk@l69 bcc19@0cf-cafb-0310-a4f2-bffclf526a37

+ main
> archive/soc2010/test-refactor ... 1.0

53. adrianholovaty committed on Jul 18, 2005

Django added support for WSGI in July
2000. This was pretty quick!

A NOTHEHR

Web.py |2005]

cheetah.html

$def with (name)

$if name:

I just wanted to say hello to $name.
$else:

Hello, world!

db.py

simple_app.py

import web

urls = (
'/(.x)"', 'hello'

)

class hello:
def GET(self, name):
i = web.input(times=1)
if not name: name = 'world'
for ¢ in xrange(int(i.times)): print ‘'Hello,', name+'!"'

if __name__ == "_ main__": web.run(urls, globals())

web. config.db_parameters = dict(dbn='postgres', user='username', pw='password', db='dbname')

simple_get.py

def GET(self):
todos = web.select('todo')
print render.index(todos)

Web.py: A Simple Framework

You would need to create
the todo table yourself.

Web.py was one of the earliest
adopters of WSGI. But it launched with
FastCGI and Lighttpd. Many
frameworks in general used flup to
serve WSGI over FastCGI and SCGI.

A NOTHEHR

Pylons |[2005])

e Pylons never gained widespread traction

e [Encouraged and emphasises modular design
o Any WSGI compatible server

Any templating engine

Any ORM

Any WSGI middleware

You could even use a different router

It was one of the biggest proponents of the WSGI standard
[t gave birth to Pyramid, which is actively developed today

O O O O

mod wsgl [2007]

uWSGI |2008]

Nginx had native support for uWSGI

Created a powerful WSGI server for all Python WSGI frameworks
Had Emperor Mode!

High Performance!

A lot more ...

Web2Py |2007]

edit myapp/controllers/d

127.0.0.1:800

sie)W i) avous W errors Y versioning W Logour) pebu

exposes:
edit views:

Saved file hash: |355e75b88ee524c96b781¢ Last saved on: |Fri Dec 28 13:54:07 2012 togale breakpoint <<back docs

def index():
example action using the internationalization operator T and flash
rendered by views/default/index.html or views/generic.html

if you need a simple wiki simple replace the two lines below with:
return auth.wiki()

response.flash = T("Welcome to web2py!™)

return dict(message=T('Hello World'))

Web2Py: Online editor!

Bottle [2000]

Commit

First release after 3 days of coding

¥ master
© 0.42.25 = 0.4.10

© defnull committed on Jul 1, 2009

from bottle import route, run
@route('/hello/:name")
def hello(name):

return '<hl>Hello %s!</h1>' % name.title()

run(host="localhost', port=8080)

Tornado |2009}

import tornado.httpserver
import tornado.ioloop

import tornado.web

class MainHandler(tornado.web.RequestHandler):
def get(self):
self.write("Hello, world")

_> application = tornado.web.Application([
(r"/", MainHandler),

D)

if _name__ == "_ main__":
Handled long—liVed connections http_server = tornado.httpserver.HTTPServer(application)
well! http_server.listen(8888)

tornado.ioloop.IOLoop.instance().start()

Flask |2010]

Fits in Twitter’s character

Hello Flask limit!

@app.route('/")
def index():
return 'Hello World!'

Flask: The Microframework of Champions!

Good idea.

Start micro, end macro.

Great documentation
Extensibility

Support and Maintenance

Great development server

Good error handling capabilities
All in 450 lines of code.

Gunicorn |2010]

Fast

Easy to use

Used greenlets: Many Connections!
Pure Python

ASGI |2015/2010]

In consumers.py

def ws_message(message):
ASGI WebSocket packet-received and send-packet message types

both have a "text" key for their textual data.
message. reply_channel.send({
"text": message.content['text'],

})

ASGI: Humble Beginnings from Django Channels

def wsgi_app(environ, start_response): async def asgi_app(scope, receive, send):

status = '200 OK' await send({

headers = [('Content-type', 'text/plain’)] "type': 'http.response.start’,

start_response(status, headers) ZIEiE ke,

return [b"Hello, WSGI World!"] *headers®: [

(b'Content-type', b'text/plain')

}

await send({
"type': 'http.response.body’,
'body': b"Hello, ASGI World!"
}

async def asgi_app scope, receive, send):

{

“type': 'http', await send({

'http_version': '1.1°, 0 V.o 0

A — type': 'http.response.start',

‘path': '/some/path/’, 'status': 2@0,

'root_path': "',

‘scheme': 'http', "headers': [

'query_string': b'paraml=valuel¶m2=value2',

headers®: [(b'Content-type', b'text/plain')
(b'host', b'www.example.com'),]
(b'user-agent', b'curl/7.64.0"),
(b'accept', b'*/*'), })

1,

"client': ('127.0.0.1', 12345), awailt Send({

‘server': ('127.0.0.1', 89),

gt "type': 'http.response.body’,
‘version’: '3.0%, 'body': b"Hello, ASGI World!"
'spec_version': '2.1',

})

}

'type': 'websocket',

‘asgi': {
'version': '3.0',
'spec_version': '2.1",
1,

'http_version': '1.1',

'path': '/ws/somepath/',

'root_path': '',

'scheme': 'ws',

'query_string': b'paraml=valuel¶m2=value2"',

"headers': [
(b'host', b'www.example.com'),
(b'sec-websocket-key', b'dGhlIHNhbXBsZSBub25jzQ=="),
(b'sec-websocket-version', b'13'),

1,

‘client': ('127.0.0.1', 12345),

'server': ('127.0.0.1', 8000),

"subprotocols': [],

'extensions': {

'permessage-deflate': {}

async def asgi_app scope, receive, send):

await send({

1)

'type': 'http.response.start’,
'status': 200,

"headers': [

(b'Content-type', b'text/plain')

await send({

1)

"type': 'http.response.body’,
'body': b"Hello, ASGI World!"

Starlette |2018]

from starlette.applications import Starlette
from starlette.responses import PlainTextResponse

import uvicorn
app = Starlette()

@app.route('/")
async def hello(request):

return PlainTextResponse('Hello, World!")
if __name__ == '__main__':

uvicorn.run(app, host='0.0.0.0"', port=8000)

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

fastapi.openapi.utils import get_openapi

fastapi.params import Depends

fastapi.types import DecoratedCallable, IncEx

fastapi.utils import generate_unique_id

starlette.applications import Starlette
starlette.datastructures import State

starlette.exceptions import HTTPException

starlette.middleware import Middleware
starlette.middleware.base import BaseHTTPMiddleware
starlette.middleware.errors import ServerErrorMiddleware
starlette.middleware.exceptions import ExceptionMiddleware
starlette.requests import Request

starlette.responses import HTMLResponse, JSONResponse, Response
starlette.routing import BaseRoute

starlette.types import ASGIApp, Lifespan, Receive, Scope, Send

AppType = TypeVar("AppType", bound="FastAPI")

FastAPI |2018]

.. from fastapi import FastAPI
from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()
app = FastAPI()
fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"},

{"item_name": "Baz"}]
class Item(BaseModel):

name: str

@app.get("/items/") description: str | None = None

rice: float
async def read_item(skip:/ int = @, limit: int = 10): P

tax: float \ =N

return fake_items_db[skip : skip + limit] cCikitlos) M MbienSR=RNone

@app.put("/items/{item_id}")

async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}

return results

We stand on the shoulders of giants. We
have inherited a legacy of ordinary
people building extraordinary things. Will
we live up to that inheritance?

Questions?

TwistedMatrix |2002]

The first Asynchronous Python Everything

e Twisted is a framework for writing asynchronous, event-driven networked
programs in Python.

from twisted.spread import pb
from twisted.python import defer
from twisted.web import widgets
class EchoDisplay(widgets.Presentation):
template = """<H1l>Welcome to my widget, displaying %%%%echotext%%%%.</h1>
<p>Here it is: %%%%getEchoPerspective()%%%%</p>"""
echotext = 'hello web!
def getEchoPerspective(self):
d = defer.Deferred()
pb.connect(d.callback, d.errback, "localhost", pb.portno,
"'guest", "guest", "pbecho", "guest", 1)
d.addCallbacks(self.makeList0f, self.formatTraceback)
return ['',d,'"]
def makeListOf(self, echoer):
d = defer.Deferred()
echoer.echo(self.echotext, pbcallback=d.callback, pberrback=d.errback)
d.addCallbacks(widgets.listify, self.formatTraceback)
return [d]
if __name__ == "__main__":
from twisted.web import server
from twisted.internet import main
a = main.Application("pbweb")
gdgt = widgets.Gadget()
gdgt.widgets['index'] = EchoDisplay()
a.listen0On(8080, server.Site(gdgt))
a.run()

QO 8 https://pypi.org/project/esmerald/

TSIy O 9

Navigation Project description
= Project description

_ Esmerald
“D Release history

Y. Download files

® Esmerald

‘R Changelog

B Documentation
O, Funding

A Homepage

Highly scalable, performant, easy to learn, easy to code and for every application. %

© Source
() Test Suite 'passing | pypi package ¥2.0.6 | python

Statistics
Documentation: https://esmerald.dev &

GitHub statistics:
Source Code: https://github.com/dymmond/esmerald
W Stars: 67

