
A Short History of Python
Web Frameworks

Quazi Nafiul Islam

I’m Nafiul!
@gamesbrainiac
@nafiul@fosstodon.org

👋

Genesis

And you may ask yourself, "How do I work this?"
And you may ask yourself, "Where is that large automobile?"
And you may tell yourself, "This is not my beautiful house"
And you may tell yourself, "This is not my beautiful wife"

And you may ask yourself, "How do I work this?"
And you may ask yourself, "Where is that large class?"
And you may tell yourself, "This is not my beautiful code"
And you may tell yourself, "This is not my beautiful server"
How did I get here?

I nerdsniped myself.

I started investigating something that had nothing to
do with what I was supposed to be doing.

I learned a lot along the way.

I felt incredibly guilty.

So, here’s a talk about what I learned.

Forgive me developers, for I have yak shaved.

1989

HTTP [1989]

1991: HTTP 0.9 (Look Ma! No Headers!)

1991: HTTP 1.0 with Headers!

Response

Request

1991: HTTP 1.1: What we mostly use today

Request

Response

HTTP Changes from 1.0 to 1.1

Byte Ranges: You could now request
specific byte ranges.

Connection Persistence: Multiple HTTP
requests could be sent over a single
connection. (Keep-Alive)

Chunked Transfers: Can now start
sending data without knowing the full
size.

Hits Misses

New HTTP Methods: New verbs
introduced such as OPTIONS, PUT,
DELETE and TRACE

We want
dynamic content

CGI [1991]

CGI: The Road to Dynamic Content

Browser Web
Server

CGI
Handler Script

Sends in
environment

variables.

CGI: The Road to Dynamic Content

Browser Web
Server

CGI
Handler Script

mod_cgi

Forking
for every
request

CGI: The Road to Dynamic Content

Browser Web
Server

CGI
Handler Script

mod_cgi

Input:
QUERY_STRING: z=1&m=2

HTTP_HOST: www.sonar.com
PATH_INFO: /bug/info/report

Output:
print(“Bug Not Found”)

http://www.sonar.com

CGI: The Road to Dynamic Content

<form action =“/cgi-bin/login.py” method=“post”>
 <input type="text" name="firstname" required>
 <input type="text" name="lastname" required>
 <input type="email" name="email" required>
 <input type="password" name="password" required>
 <input type="submit" value="Login!">
</form>

1999

Zope [1999]

Zope: The Web CMS that did everything

Zope: The Web CMS that did everything

Zope: The Web CMS that did everything

Zope is a framework that allows
developers of varying skill levels to build

web applications. – The Zope Book

Zope: The Web CMS that did everything

All the following images are from “The
Zope Book” by Amos Latteier and Michel

Pelletier

Zope: The Web CMS that did everything

Zope 1 was very short
lived. Most people

started with Zope 2.
Zope 1 was originally

called Principia

Zope: The Web CMS that did everything

http://localhost:8080/Sales/…

Zope: DTML (Document Template Markup Language)

Zope: The Web CMS that did everything

Zope: The Web CMS that did everything

Zope: The Web CMS that did everything

Zope: The Web CMS that did everything

Zope is called Zope because it is the Z Object
Publishing Environment.

Zope: The Web CMS that did everything

Everything was an object. Pages, Templates, Python
Scripts, DTML. All of it was stored in ZODB.

Zope: The Web CMS that did everything

Zope 2 was perhaps one of the
most influential open source

projects. Ever. But Zope 3 began
the downfall of Zope

Potala
Palace

Zope: The Downfall

All or Nothing. Zope did everything, and wasn’t
modular. People started building things that were

slightly better. It was way ahead of its time.

Zope: The Downfall (Zope 3 in 2004)

People wanted to use the goodies in from Zope 3 in
Zope 2, so they used five (3+2).

Quixote [2000]

Quixote: The first modern? Web Framework?

Quixote

from quixote.html import html_quote

from splat.web.util import get_bug_database

def _q_index (request):

 result = ["""\

 <html>

 <head><title>SPLAT! Bug Index</title></head>

 <body>

 <table>

 <tr>

 <th>bug id</th>

 <th>description</th>

 </tr>

 """]

 bug_db = get_bug_database()

 for bug in bug_db.get_all_bugs():

 if bug.status != bug.ST_RESOLVED:

 result.append("""\

 <tr>

 <td>%s</td>

 <td>%s</td>

 </tr>

 """ % (bug, html_quote(bug.description))

 result.append("""\

 </table>

 </body>

 </html>

 """)

 return "".join(result)

Quixote

from quixote.html import html_quote

from splat.web.util import get_bug_database

def _q_index (request):

 result = ["""\

 <html>

 <head><title>SPLAT! Bug Index</title></head>

 <body>

 <table>

 <tr>

 <th>bug id</th>

 <th>description</th>

 </tr>

 """]

 bug_db = get_bug_database()

 for bug in bug_db.get_all_bugs():

 if bug.status != bug.ST_RESOLVED:

 result.append("""\

 <tr>

 <td>%s</td>

 <td>%s</td>

 </tr>

 """ % (bug, html_quote(bug.description))

 result.append("""\

 </table>

 </body>

 </html>

 """)

 return "".join(result)

Entry
Point

Quixote: Python Templating Language (PTL)

template bug_row (bug):

 """\

 <tr>

 <td>%s</td>

 <td>%s</td>

 </tr>

 """ % (bug, html_quote(bug.description)

template _q_index (request, bug):

 header("Bug Index")

 """\

 <table>

 <tr>

 <th>bug id</th>

 <th>description</th>

 </tr>

 """

 bug_db = get_bug_database()

 for bug in bug_db.get_all_bugs():

 if bug.status != bug.ST_RESOLVED:

 bug_row(bug)

 "</table>\"

 footer()

template header (title):

 """\

 <html>

 <head><title>SPLAT! - %s</title></head>

 <body>

 """ % html_quote(title)

template footer ():

 """\

 </table>

 </body>

 </html>

 """

Entry
Point

Most Frameworks
have HTML as a
default. Quixote

inverted that. JSX
wasn’t the first of

its kind.

Credit: Greg Ward

Quixote

Quixote never
really took off.

Webware for Python [2000]

Webware for Python: The Rise of JSP

Webware for Python: Understanding CGI and Servlets

Browser Web
Server

CGI
Handler Script

mod_cgi

Forking
for every
request

��

Webware for Python: Understanding CGI and Servlets

Webware for Python: Understanding Servlets

Browser Web
Server

Servlet
Container Servlet

Can handle
multiple

concurrent
requests

Webware for Python: The Java Stack but in Python

Webware for Python: The Java Stack but in Python

Multi-threaded
application

server

Webware for Python: The Java Stack but in Python

This would pass
along the

request to the
Application

Server

Webware for Python: The Java Stack but in Python

Development
Production

Webware for Python: The Java Stack but in Python

Templating
Language

Webware for Python: The Java Stack but in Python

Templating
Language

Webware for Python: Middlekit (ORM)

Files Overview

Setting up
Middlekit

Querying

Webware for Python: PSP

<psp:file>
 # Since this is at the module level, _log is only defined once for this file
 import logging
 _log = logging.getLogger(__name__)
</psp:file>
<html>
 <% _log.debug('Okay, I’ve been called.') %>
 <p>Write stuff here.</p>
</html>

<psp:class>
 def writeNavBar(self):
 for uri, title in self.menuPages():
 self.write("%s" % (uri, title))
</psp:class>

<% for i in range(5):
 res.write("This is number" + str(i) + "
") %>

Python files
inside HTML

Declaring
Python classes in

HTML

Good old for
loops in HTML!

Webware for Python

Webware for
Python still is

actively
maintained.

Interlude

The Modern Request Pipeline: Things are Coalescing

Web Server Application
Server

Web
Framework

Getting requests and handling
static content. Also handles SSL

Forwards requests, and handles
instances of the Framework

applications

Houses the Application Code

WSGI [2001]

WSGI: A Successor to CGI for Python

WI-Z-GI
Web Server Gateway Interface:

Final version in 2003

WSGI: A Successor to CGI for Python

def simple_app(environ, start_response):

 status = '200 OK'

 response_headers = [('Content-type', 'text/plain')]

 start_response(status, response_headers)

 return []

This is the callable that is passed into the
WSGI server.

WSGI: A Successor to CGI for Python

def simple_app(environ, start_response):

 status = '200 OK'

 response_headers = [('Content-type', 'text/plain')]

 start_response(status, response_headers)

 return []

Similar to CGI, this passes information
like REQUEST_METHOD, QUERY_STRING

WSGI: A Successor to CGI for Python

def simple_app(environ, start_response):

 status = '200 OK'

 response_headers = [('Content-type', 'text/plain')]

 start_response(status, response_headers)

 return []

The callable that is used to create the
response.

WSGI: A Successor to CGI for Python

def simple_app(environ, start_response):

 """Simplest possible application object"""

 status = '200 OK'

 response_headers = [('Content-type', 'text/plain')]

 response = your_view_function(environ)

 start_response(status, response_headers)

 return [response]

This function is provided by the WSGI
server itself. So a server like gunicorn

will have this available for you.

WSGI: A Successor to CGI for Python

def hello_view(environ, start_response):

 """

 A view function that returns "Hello World".

 """

 status = '200 OK'

 headers = [('Content-type', 'text/plain')]

 start_response(status, headers)

 return [b"Hello World"]

def goodbye_view(environ, start_response):

 """

 A view function that returns "Goodbye World".

 """

 status = '200 OK'

 headers = [('Content-type', 'text/plain')]

 start_response(status, headers)

 return [b"Goodbye World"]

def application(environ, start_response):

 """

 The WSGI callable. It routes requests based on the URL path.

 """

 path = environ.get('PATH_INFO', '')

 if path == '/hello':

 return hello_view(environ, start_response)

 elif path == '/goodbye':

 return goodbye_view(environ, start_response)

 else:

 status = '404 Not Found'

 headers = [('Content-type', 'text/plain')]

 start_response(status, headers)

 return [b"404 - Not Found"]

simple_app.py

~ -> gunicorn simpleapp:application

WSGI: The Inevitable Rise of Python Web Frameworks

CherryPy [2002]

CherryPy

CherryPy is in
between a compiler
and an application

server.

CherryPy: Remind you of JSX?

CherryClass Root:

mask:

 def index(self, name="you"):

 <html><body>

 Hello, <b py-eval="name"> !

 <form py-attr="request.base" action="" method="get">

 Enter your name: <input name=name type=text>

 <input type=submit value=OK>

 </form>

 </body></html>

~ -> python ../cherrypy.py Hello.cpy

Hello.cpy

This mask allowed
you to use
CherryPy’s
templating
language.

CherryPy: Remind you of JSX?

CherryPy is still alive, and moved
to WSGI in 2005. It is not

compatible with ASGI.

After 2005, it was
never the same

again.

2005

TurboGears [2005]

TurboGears: Rails was on the rise

Integrated Full-Stack
Framework: ActiveRecord,

ActiveView and
ActiveController

Database Migrations

Scaffolding tools and
Generators

Convenience over
Configuration:

Sensible Defaults
RESTful

Development

Great Docs: More and
more tools live and
die by the quality of

docs

Clear “Best
Practices”: Good new

newcomers

TurboGears

TurboGears: The Stack

TurboGears: The Stack

The ORM: Uses an ActiveRecord
Pattern. This meant that each record

could perform CRUD operations
because the objects containers both

data and behaviour.

from sqlobject import *

from datetime import datetime

class Person(SQLObject):

 firstName = StringCol(length=100)

 middleInitial = StringCol(length=1, default=None)

 lastName = StringCol(length=100)

 lastContact = DateTimeCol(default=datetime.now)

>>> p = Person(firstName="John", lastName="Doe")

>>> p

<Person 1 firstName='John' middleInitial=None

lastName='Doe' lastContact='datetime.datetime...)'>

>>> p.lastContact

datetime.datetime(2005, 9, 16, 9, 28, 7)

>>> p.firstName

'John'

>>> p.middleInitial = 'Q'

>>> p.middleInitial

'Q'

>>> p2 = Person.get(1)

>>> p is p2

True

TurboGears: The Stack

Controller and View Layer

import cherrypy

class MyRoot:

 @cherrypy.expose()
 def index(self, who="World"):
 return "Hello, %s!" % (who)

TurboGears: The Stack

The Templating Engine

print "<table>"
for person in people:
 print "<tr>"
 print "<td>%s</td>" % (person.name)
 print "</tr>"
print "</table>"

<table>
 <tr py:for="person in people">
 <td>Kevin Bacon</td>
 </tr>
</table>

TurboGears: The Stack

The JavaScript Library that
helps with AJAX

TurboGears: The Stack

TurboGears initially used CherryPy’s
server, which was HTTP 1.1 compliant.
But later on moved onto WSGI when it

gained traction as did many other
frameworks.

TurboGears: The Comments!

A New Framework

Django [2005]

Django: Django all the way down!

Django: It didn’t use WSGI to start with

Django: URLS and views

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^/articles/(?P<year>\d{4})/$', 'myproject.news.views.year_archive'),
 (r'^/articles/(?P<year>\d{4})/(?P<month>\d{2})/$', 'myproject.news.views.month_archive'),
 (r'^/articles/(?P<year>\d{4})/(?P<month>\d{2})/(?P<article_id>\d+)/$', 'myproject.news.views.article_detail'),
)

def article_detail(request, year, month, article_id):
 # Use the Django API to find an object matching the URL criteria.
 a = get_object_or_404(articles, pub_date__year=year, pub_date__month=month, pk=article_id)
 return render_to_response('news/article_detail', {'article': a})

urls.py

views.py

~ -> django-admin.py runserver 8080 —settings=myproject.settings

Django: The best docs and it had comments!

Django: Move to WSGI

Django added support for WSGI in July
2006. This was pretty quick!

Web.py [2005]

Web.py: A Simple Framework

cheetah.html

db.py

simple_app.py

simple_get.py

You would need to create
the todo table yourself.

Web.py: A Simple Framework (that YouTube used)

Web.py was one of the earliest
adopters of WSGI. But it launched with

FastCGI and Lighttpd. Many
frameworks in general used flup to
serve WSGI over FastCGI and SCGI.

Pylons [2005]

● Pylons never gained widespread traction
● Encouraged and emphasises modular design

○ Any WSGI compatible server
○ Any templating engine
○ Any ORM
○ Any WSGI middleware
○ You could even use a different router

● It was one of the biggest proponents of the WSGI standard
● It gave birth to Pyramid, which is actively developed today

Pylons: A Legacy of Modular Design

mod_wsgi [2007]

mod_wsgi: Accelerating WSGI adoption

uWSGI [2008]

uWSGI: A Powerful WSGI Reverse Proxy

● Nginx had native support for uWSGI
● Created a powerful WSGI server for all Python WSGI frameworks
● Had Emperor Mode!
● High Performance!
● A lot more …

Web2Py [2007]

Web2Py: Online editor!

Bottle [2009]

Bottle: A framework in 600 lines of code

Bottle: Everything in a single file!

from bottle import route, run

@route('/hello/:name')

def hello(name):

 return '<h1>Hello %s!</h1>' % name.title()

run(host='localhost', port=8080)

Tornado [2009]

Tornado: A Renaissance in Async Python Web Frameworks!

import tornado.httpserver

import tornado.ioloop

import tornado.web

class MainHandler(tornado.web.RequestHandler):

 def get(self):

 self.write("Hello, world")

application = tornado.web.Application([

 (r"/", MainHandler),

])

if __name__ == "__main__":

 http_server = tornado.httpserver.HTTPServer(application)

 http_server.listen(8888)

 tornado.ioloop.IOLoop.instance().start()

Handled long-lived connections
well!

Flask [2010]

Flask: The Microframework of Champions!

Fits in Twitter’s character
limit!

● Good idea.
● Start micro, end macro.
● Great documentation
● Extensibility
● Support and Maintenance
● Great development server
● Good error handling capabilities
● All in 450 lines of code.

Why did Flask win over bottle?

Gunicorn [2010]

Gunicorn

● Fast
● Easy to use
● Used greenlets: Many Connections!
● Pure Python

The Rise of Node.js and WebSockets!

ASGI [2015/2016]

ASGI: Humble Beginnings from Django Channels

WSGI to ASGI

def wsgi_app(environ, start_response):

 status = '200 OK'

 headers = [('Content-type', 'text/plain')]

 start_response(status, headers)

 return [b"Hello, WSGI World!"]

async def asgi_app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 (b'Content-type', b'text/plain')

]

 })

 await send({

 'type': 'http.response.body',

 'body': b"Hello, ASGI World!"

 })

ASGI: Scope [HTTP 1.1]

async def asgi_app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 (b'Content-type', b'text/plain')

]

 })

 await send({

 'type': 'http.response.body',

 'body': b"Hello, ASGI World!"

 })

{

 'type': 'http',

 'http_version': '1.1',

 'method': 'GET',

 'path': '/some/path/',

 'root_path': '',

 'scheme': 'http',

 'query_string': b'param1=value1¶m2=value2',

 'headers': [

 (b'host', b'www.example.com'),

 (b'user-agent', b'curl/7.64.0'),

 (b'accept', b'*/*'),

],

 'client': ('127.0.0.1', 12345),

 'server': ('127.0.0.1', 80),

 'asgi': {

 'version': '3.0',

 'spec_version': '2.1',

 }

}

ASGI: Scope [Websocket]

async def asgi_app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 (b'Content-type', b'text/plain')

]

 })

 await send({

 'type': 'http.response.body',

 'body': b"Hello, ASGI World!"

 })

{

'type': 'websocket',

'asgi': {

 'version': '3.0',

 'spec_version': '2.1',

},

'http_version': '1.1',

'path': '/ws/somepath/',

'root_path': '',

'scheme': 'ws',

'query_string': b'param1=value1¶m2=value2',

'headers': [

 (b'host', b'www.example.com'),

 (b'sec-websocket-key', b'dGhlIHNhbXBsZSBub25jZQ=='),

 (b'sec-websocket-version', b'13'),

],

'client': ('127.0.0.1', 12345),

'server': ('127.0.0.1', 8000),

'subprotocols': [],

'extensions': {

 'permessage-deflate': {}

}

}

Starlette [2018]

Starlette: The ASGI Toolkit

from starlette.applications import Starlette

from starlette.responses import PlainTextResponse

import uvicorn

app = Starlette()

@app.route('/')

async def hello(request):

 return PlainTextResponse('Hello, World!')

if __name__ == '__main__':

 uvicorn.run(app, host='0.0.0.0', port=8000)

Starlette: How it is used in FastAPI

fastapi/applications.py

FastAPI [2018]

FastAPI: Integration with Typehints and PyDantic

from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):

 name: str

 description: str | None = None

 price: float

 tax: float | None = None

@app.put("/items/{item_id}")

async def update_item(item_id: int, item: Item):

 results = {"item_id": item_id, "item": item}

 return results

from fastapi import FastAPI

app = FastAPI()

fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"},

{"item_name": "Baz"}]

@app.get("/items/")

async def read_item(skip: int = 0, limit: int = 10):

 return fake_items_db[skip : skip + limit]

We stand on the shoulders of giants. We
have inherited a legacy of ordinary

people building extraordinary things. Will
we live up to that inheritance?

Questions?

TwistedMatrix [2002]

The first Asynchronous Python Everything

● Twisted is a framework for writing asynchronous, event-driven networked
programs in Python.

