
Writing code for science and data

Varoquaux
Gaël

import science
science.discover()

import data science
data science.discover()

Writing code for science and data

Varoquaux
Gaël

import science
science.discover()

import data science
data science.discover()

I am a “scientist”
quantum physics PhD

Active member of
the scipy ecosystem
since early 2000s

before scipy was cool
before pydata existed

I am now interested in cognitive neuroscience
linking psychology and neuroscience (neural implementations)

Connect neural activity to thoughts and cognition

Machine learning for cognitive neuroimaging

Brain
imaging

Learn a bilateral link between brain activity
and cognitive function

Machine learning for cognitive neuroimaging

Predicting neural response from stimuli

Machine learning for cognitive neuroimaging

Predicting neural response from stimuli

Image

V1
cortex

V2
cortex

Inferior
temporal

cortex

Fusiform
face area

Jack?

Visual system

Machine learning for cognitive neuroimaging

Predicting neural response from stimuli

Visual system

Machine learning for cognitive neuroimaging

Predicting neural response from stimuli

Visual system

Convolutional networks map well to human visual system

Machine learning for cognitive neuroimaging

“Brain reading”: decoding

Machine learning for cognitive neuroimaging

Lots of moving parts

Machine Learning, I/O,
reporting, job management

scikit-learn

ni

nilearn:
neuroimaging

Machine learning for cognitive neuroimaging

Lots of moving parts

Machine Learning, I/O,
reporting, job management

scikit-learn

ni

nilearn:
neuroimaging

Software: make it work, make it right, make it boring

Writing code for science and data

1 Iterative thinking

2 Library design

3 Machine learning in Python

Should make you
more productive

1 Iterative thinking

1 Our workflow: (data) science with computers
Work based on intuition

and experimentation

Conjecture

Experiment

ñ Interactive & framework-less

Yet needs consolidation
keeping flexibility

1 Reproducibility challenge in this iterative workflow

Reproducibility
New analysis

coming to the same conclusion
Enables verification / falsification

Also relevant for data science:
Operational recommendations can be questioned

Akin to challenges in sys-admin:
Try rebuilding a server after disk loss

1 Reproducibility challenge in this iterative workflow

Reproducibility
New analysis

coming to the same conclusion
Enables verification / falsification

Impediments
Missing steps / files
Libraries have changed
Non portable code
Statistical / numerical instabilities
No one knows where the info is

1 Reproducibility challenge in this iterative workflow

Reproducibility
New analysis

coming to the same conclusion
Enables verification / falsification

Impediments
Missing steps / files
Libraries have changed
Non portable code
Statistical / numerical instabilities
No one knows where the info is

Code quality matters Manual steps are evil

Technical
Human

1 Reproducibility challenge in this iterative workflow

Reproducibility
New analysis

coming to the same conclusion
Enables verification / falsification Frozen food

Reusability
Applying the approach to a new problem
Being able to understand, modify,
run in new settings

Let us enable reusability

1 A design pattern in computational experiments
MVC pattern from Wikipedia:
Model
Manages the data
and rules of the
application

View
Output represen-
tation
Possibly several views

Controller
Accepts input
and converts it to
commands
for model and view

Photo-editing software
Filters Canvas Tool palettes

Typical web application
Database Web-pages URLs

For science and data:
Numerical, data-
processing, & ex-
perimental logic

Results, as files.
Data & plots

Imperative API
Avoid input as files:
not expressive

Module
with functions

Post-processing script
CSV & data files

Script
ñ for loops

A recipe
3 types of files:
•modules • command scripts • post-processing scripts
CSVs & intermediate data files

Separate computation from analysis / plotting
Code and text (and data) ñ version control

Decouple steps
Goals: Reuse code

Mitigate compute time

1 A design pattern in computational experiments
MVC pattern from Wikipedia:
Model
Manages the data
and rules of the
application

View
Output represen-
tation
Possibly several views

Controller
Accepts input
and converts it to
commands
for model and view

For science and data:
Numerical, data-
processing, & ex-
perimental logic

Results, as files.
Data & plots

Imperative API
Avoid input as files:
not expressive

Module
with functions

Post-processing script
CSV & data files

Script
ñ for loops

A recipe
3 types of files:
•modules • command scripts • post-processing scripts
CSVs & intermediate data files

Separate computation from analysis / plotting
Code and text (and data) ñ version control

Decouple steps
Goals: Reuse code

Mitigate compute time

1 A design pattern in computational experiments
MVC pattern from Wikipedia:
Model
Manages the data
and rules of the
application

View
Output represen-
tation
Possibly several views

Controller
Accepts input
and converts it to
commands
for model and view

For science and data:
Numerical, data-
processing, & ex-
perimental logic

Results, as files.
Data & plots

Imperative API
Avoid input as files:
not expressive

Module
with functions

Post-processing script
CSV & data files

Script
ñ for loops

A recipe
3 types of files:
•modules • command scripts • post-processing scripts
CSVs & intermediate data files

Separate computation from analysis / plotting
Code and text (and data) ñ version control

Decouple steps
Goals: Reuse code

Mitigate compute time

1 A design pattern in computational experiments
MVC pattern from Wikipedia:
Model
Manages the data
and rules of the
application

View
Output represen-
tation
Possibly several views

Controller
Accepts input
and converts it to
commands
for model and view

For science and data:
Numerical, data-
processing, & ex-
perimental logic

Results, as files.
Data & plots

Imperative API
Avoid input as files:
not expressive

Module
with functions

Post-processing script
CSV & data files

Script
ñ for loops

A recipe
3 types of files:
•modules • command scripts • post-processing scripts
CSVs & intermediate data files

Separate computation from analysis / plotting
Code and text (and data) ñ version control

Decouple steps
Goals: Reuse code

Mitigate compute time

1 How I work progressive consolidation

Start with a script playing to understand the problem

Identify blocks/operations ñ move to a function

As they stabilize, move to a module

Clean: delete code & files you have version control

Why is it hard?
Long compute times
make us unadventurous

Know your tools
Refactoring editor
Version control

1 How I work progressive consolidation

Start with a script playing to understand the problem

Identify blocks/operations ñ move to a function
Use functions
Obstacle: local scope
requires identifying input and output variables

That’s a good thing

Interactive debugging / understanding
inside a function: %debug in IPython

Functions are the basic reusable abstraction

As they stabilize, move to a module

Clean: delete code & files you have version control

Why is it hard?
Long compute times
make us unadventurous

Know your tools
Refactoring editor
Version control

1 How I work progressive consolidation

Start with a script playing to understand the problem

Identify blocks/operations ñ move to a function

As they stabilize, move to a module
Modules

enable sharing between experiments
ñ avoid 1000 lines scripts + commented code
enable testing

Fast experiments as tests
ñ gives confidence, hence refactorings

Clean: delete code & files you have version control

Why is it hard?
Long compute times
make us unadventurous

Know your tools
Refactoring editor
Version control

1 How I work progressive consolidation

Start with a script playing to understand the problem

Identify blocks/operations ñ move to a function

As they stabilize, move to a module

Clean: delete code & files you have version control

Attentional load makes it impossible
to find or understand things

Where’s Waldo?

Why is it hard?
Long compute times
make us unadventurous

Know your tools
Refactoring editor
Version control

1 How I work progressive consolidation

Start with a script playing to understand the problem

Identify blocks/operations ñ move to a function

As they stabilize, move to a module

Clean: delete code & files you have version control

Why is it hard?
Long compute times
make us unadventurous

Know your tools
Refactoring editor
Version control

1 joblib.Memory
The memoize pattern

mem = joblib.Memory(cachedir=’.’)
g = mem.cache(f)
b = g(a) # computes a using f
c = g(a) # retrieves results from store

For scientific and data computing
a & b can be big
a & b arbitrary objects no change in workflow
Results stored on disk
Cache flushed when f changes safe caching

1 joblib.Memory
The memoize pattern

mem = joblib.Memory(cachedir=’.’)
g = mem.cache(f)
b = g(a) # computes a using f
c = g(a) # retrieves results from store

For scientific and data computing
Fits in experimentation loop
Helps decrease re-run times œ

Black-boxy, persistence only implicit
Discourages function refactoring (avoid recomputing)

tip: cache functions inside functions

Using software-engineering best practices

1 The ladder of code quality

In
cr

ea
sin

g
co

st

?İ

Use pyflakes in your editor seriously

Coding convention, good naming

Version control Use git + github

Code review

Unit testing
If it’s not tested, it’s broken or soon will be

Make a package
controlled dependencies and compilation...

1 The ladder of code quality
In

cr
ea

sin
g

co
st

?İ

Use pyflakes in your editor seriously

Coding convention, good naming

Version control Use git + github

Code review

Unit testing
If it’s not tested, it’s broken or soon will be

Make a package
controlled dependencies and compilation...

Avoid premature software engineering

1 The ladder of code quality
In

cr
ea

sin
g

co
st

?İ

Use pyflakes in your editor seriously

Coding convention, good naming

Version control Use git + github

Code review

Unit testing
If it’s not tested, it’s broken or soon will be

Make a package
controlled dependencies and compilation...

Avoid premature software engineering

Over versus under engineering
Our goal is generating insights

Experimentation to develop intuitions
ñ new ideas

As the path becomes clear: consolidation
Heavy engineering too early freezes bad ideas

1 Libraries
In

cr
ea

sin
g

co
st

?İ

Use pyflakes in your editor seriously

Coding convention, good naming

Version control Use git + github

Code review

Unit testing
If it’s not tested, it’s broken or soon will be

Make a package
controlled dependencies and compilation...

A library

2 Library design

If doing research is like crossing oceans
doing software is like building briges

2 Principles of API design for SciPy / PyData stack
Be a library

Functions trump classes

Shallow objects, understandable by their “surface”:
• interface (set of methods)
• attributes

*

No too many

Universal data objects for inputs & output:
dicts, numpy arrays, pandas dataframe

Few kinds of “action” objects,
defined by their function

Building on solid foundations
Plug components together for an application

3D plotting + statistics ù Neuroimaging

How do we ensure correctness?

Testing If it ain’t tested, it’s broken

establishes correctness enables refactoring

Building on solid foundations
Plug components together for an application

3D plotting + statistics ù Neuroimaging

How do we ensure correctness?

Testing If it ain’t tested, it’s broken
establishes correctness enables refactoring

2 Testing: what we’ve learned in scikit-learn
Testing basic mathematical properties
eg a minimizer decreases cost function

or symmetries, or special cases

Tests should run very fast

Make everything perfectly reproducible.

Test interface specification: “auto” tests

Add a test each time there is a bug

2 Testing: what we’ve learned in scikit-learn
Testing basic mathematical properties

Make everything perfectly reproducible.
Never use the global generator np.random in tests

it creates side effects

Generators as optional inputs to functions:
def f(x, random state=None):

if random state is None:
random state = np.random.RandomState()

noise = random state.randn()

Test interface specification: “auto” tests

Add a test each time there is a bug

2 Testing: what we’ve learned in scikit-learn
Testing basic mathematical properties

Make everything perfectly reproducible.

Test interface specification: “auto” tests
• Reproducibility on simple data
• Multiple data types
• Proper errors on bad input
• Objects respect interface

Add a test each time there is a bug

2 Testing: what we’ve learned in scikit-learn
Testing basic mathematical properties

Make everything perfectly reproducible.

Test interface specification: “auto” tests

Add a test each time there is a bug

3 Machine learning in Python

scikit-learn

3 My stack for data science

Python, what else?
General-purpose language
Interactive
Easy to read / write

3 My stack for data science

The scientific Python stack
numpy arrays

Mostly a float**
No annotation / structure
Universal across applications
Easily shared across languages

03878
79479

7927

01790
75270

1578

94071
74612

4797

54970
71871

7887

13653
49049

5190

74754
26535

8098

48721
54634

9084

90345
67324

5614

78957
18774

5620

03878
79479

7927

01790
75270

1578

94071
74612

4797

54970
71871

7887

13653
49049

5190

74754
26535

8098

48721
54634

9084

90345
67324

5614

78957
18774

5620

3 My stack for data science

The scientific Python stack
numpy arrays

Connecting to
pandas

Columnar data
scikit-image

Images
scipy

Numerics, signal processing
...

3 Machine learning in a nutshell
Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning in a nutshell
Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning in a nutshell
Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

x

y

x

y

Which model do you prefer?

3 Machine learning in a nutshell
Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

x

y

x

y

Minimizing train error ‰ generalization : overfit

3 Machine learning in a nutshell
Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

x

y

x

y

Adapting model complexity to data – regularization

3 Machine learning without learning the machinery

A library, not a program
More expressive and flexible
Easy to include in an ecosystem

let’s disrupt something new

As easy as py
from s k l e a r n import svm
c l a s s i f i e r = svm.SVC()
c l a s s i f i e r . f i t (X t r a i n , y t r a i n)
Y t e s t = c l a s s i f i e r . p r e d i c t (X t e s t)

3 Machine learning without learning the machinery

A library, not a program
More expressive and flexible
Easy to include in an ecosystem

let’s disrupt something new

As easy as py
from s k l e a r n import svm
c l a s s i f i e r = svm.SVC()
c l a s s i f i e r . f i t (X t r a i n , y t r a i n)
Y t e s t = c l a s s i f i e r . p r e d i c t (X t e s t)

3 Machine learning without learning the machinery

A library, not a program
More expressive and flexible
Easy to include in an ecosystem

let’s disrupt something new

As easy as py
from s k l e a r n import svm
c l a s s i f i e r = svm.SVC()
c l a s s i f i e r . f i t (X t r a i n , y t r a i n)
Y t e s t = c l a s s i f i e r . p r e d i c t (X t e s t)

3 Show me your data: the samples ˆ features matrix

Data input: a 2D numerical array
Requires transforming your problem

With text documents:

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

s
a
m
p
l
e
s

featu
res

sklearn.feature extraction.text.TfIdfVectorizer

3 Show me your data: the samples ˆ features matrix

Data input: a 2D numerical array
Requires transforming your problem

With text documents:

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

d
o
c
u
m
e
n
t
s

the

Python

performance

profiling

module

is

code

can

a

sklearn.feature extraction.text.TfIdfVectorizer

“Big” data
Engineering efficient processing pipelines

Many samples or

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

s
a
m
p
l
e
s

featu
res

Many features

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

s
a
m
p
l
e
s

featu
res 03078

09070
7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

See also: http://www.slideshare.net/GaelVaroquaux/processing-
biggish-data-on-commodity-hardware-simple-python-patterns

3 Many samples: on-line algorithms

e s t i m a t o r . p a r t i a l f i t (X t r a i n , Y t r a i n)

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

3 Many samples: on-line algorithms

e s t i m a t o r . p a r t i a l f i t (X t r a i n , Y t r a i n)

Supervised models: predicting
sklearn.naive bayes...
sklearn.linear model.SGDRegressor
sklearn.linear model.SGDClassifier

Clustering: grouping samples
sklearn.cluster.MiniBatchKMeans
sklearn.cluster.Birch

Linear decompositions: finding new representations
sklearn.decompositions.IncrementalPCA
sklearn.decompositions.MiniBatchDictionaryLearning
sklearn.decompositions.LatentDirichletAllocation

3 Many features: on-the-fly data reduction

ñ Reduce the data as it is loaded

X s m a l l =
e s t i m a t o r . t r a n s f o r m (X big , y)

3 Many features: on-the-fly data reduction

Random projections (will average features)
sklearn.random projection

random linear combinations of the features

Fast clustering of features
sklearn.cluster.FeatureAgglomeration

on images: super-pixel strategy

Hashing when observations have varying size
(e.g. words)

sklearn.feature extraction.text.
HashingVectorizer

stateless: can be used in parallel

More gems in scikit-learn
SAG:
linear model.LogisticRegression(solver=’sag’)
Fast linear model on biggish data

More gems in scikit-learn
SAG:
linear model.LogisticRegression(solver=’sag’)
Fast linear model on biggish data

PCA == RandomizedPCA: (0.18)
Heuristic to switch PCA to random linear algebra

Fights global warming

Huge speed gains for biggish data

More gems in scikit-learn

Outlier detection and isolation forests (0.18)

Time to wrap up

Time to wrap up

Code, code, code

Scipy-lectures: learning numerical Python

Many problems are better solved by
documentation than new code

Scipy-lectures: learning numerical Python
Comprehensive document: numpy, scipy, ...

1. Getting started with Python for science
2. Advanced topics
3. Packages and applications

http://scipy-lectures.org

Scipy-lectures: learning numerical Python

Code examples sphinx-gallery

Scipy-lectures: learning numerical Python

Code examples sphinx-gallery

Useful for library design too:
example-driven design

@GaelVaroquaux

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation
Agility is key for experimentation

Don’t adopt engineering practices too early
Do adopt them in time

2 Go far: Quality software is the cement of science

3 Facilitate: Make it easy to use

@GaelVaroquaux

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation

2 Go far: Quality software is the cement of science
Components made for reuse

Quality & testing

3 Facilitate: Make it easy to use

@GaelVaroquaux

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation

2 Go far: Quality software is the cement of science

3 Facilitate: Make it easy to use
API, docs, & examples

scikit-learn
Machine learning without learning the machinery

	Iterative thinking
	Library design
	Machine learning in Python

