

Python in the Hardware Industry

Raphael Nestler (@rnestler on ©)
February 17, 2017

Sensirion AG

SENSIRION

Outline

1. How Sensirion Uses Python

2. Growing Pains

3. Our Solution

SENSIRION

THE SENSOR COMPANY

How Sensirion Uses Python

SENSIRION

THE SENSOR COMPANY

An Embarrassingly Short Introduction To Sensirion

SENSIRION

THE SENSOR COMPANY

An Embarrassingly Short Introduction To Sensirion

We turn these:

Custom ASIC

= Produced with a standard
CMOS process

Delivered to us as wafers

SENSIRION

THE SENSOR COMPANY

An Embarrassingly Short Introduction To Sensirion

With lots of magic:

Testing the ASIC

Cutting the wafer
= Adding out magic sauce (the sensor)

Calibrate

SENSIRION

THE SENSOR COMPANY

An Embarrassingly Short Introduction To Sensirion

Into those:

The final sensor

Integrated on one chip

Fully calibrated

Digital interface to measure

SENSIRION

THE SENSOR COMPANY

And Make Them Tinier And Tinier...

First digital First DFN package World’s smallest First Chips Scale Most versatile and
RHIT sensor RH/T sensor RHIT for Consumer Package & World’s smallest Automotive
Electronics smallest RH/T Grade RH/T Sensor
Sensor
& > &
5x7.5x2.5mm 24-55V 3x3x1.1mm 21-36V 2x2x0.8mm 18V 1.3x0.7x0.6mm 18V 24x2.4x09mm 2.4-55V
SENSIRION

THE SENSOR COMPANY

We Are a Hardware Company

= We produce Hardware not Software

SENSIRION

THE SENSOR COMPANY

= We produce Hardware not Software
= But we use in house developed Software everywhere

= Production critical Software written in C#
= Python used in automation, data-analysis, R&D purpose, laboratory measurements

= We produce Hardware not Software

= But we use in house developed Software everywhere
= Production critical Software written in C#

= Python used in automation, data-analysis, R&D purpose, laboratory measurements
— Written by non Software Engineers

During research and development a new sensor goes roughly through these (horribly
simplified) stages:

Early experimentation

First prototype

First Silicon

Qualification

0-Series

o o &~ w -

Final Product

During research and development a new sensor goes roughly through these (horribly
simplified) stages:

Early experimentation

First prototype

First Silicon

Qualification

0-Series

o o0k~ w =

Final Product

During steps 1-4 lots of software work is done in the lab with Python.

How Sensirion Uses Python

Some Examples

SENSIRION

THE SENSOR COMPANY

= Pandas! is very powerful for data processing

= jupyter notebooks are awesome for interactive work

PyQt (PySide?) can be used to create GUIs for recurring analysis
= Two Types of Data

= Wafer (Sensor) data
= Experiment data

!Python Data Analysis Library: http://pandas.pydata.org/

Python bind f th -platf GUI toolkit Qt: https: ki.qt.io/PySid
ython binding of the cross-platform oolkit Q ps://wiki.qt.io/PySide SENSIRION

THE SENSOR COMPANY

http://pandas.pydata.org/
https://wiki.qt.io/PySide

Example: Data Analysis - Wafer Data

= Data comes from many sources in many formats

= Supplier delivered data (CSV, Excel, JSON, ...)
= Sensirion Internal Data (SQL, CSV)

= Formats change over time! (Even from the same supplier)

SENSIRION

THE SENSOR COMPANY

= Data comes from many sources in many formats
= Supplier delivered data (CSV, Excel, JSON, ...)
= Sensirion Internal Data (SQL, CSV)
= Formats change over time! (Even from the same supplier)
— Reformat to standard csv format
— Store it systematically
= Python Scripts with quick iterations (New data — new workarounds for

conversion)

Example: Data Analysis - Wafer Visualization

Masks
Wafer Text fiter

169

Select all -->

Give a Serial

Wafers Sections Parameters Plots
D8Al169-06 | |CMOS XCord Box_All
D8A169-07 MEMSWAT YCord Box_Wafer
D8A169-08 WL RCord Histogram_All
D8A169-09 CAP PhiCord Histogram_Wafer
D8A169-10 |_||0OI EProber_TCO i Statistic
D8A169-11 | |||Prober Prober_Sensitivity Violin_All
D8A169-12 Calibration Prober_Trim_P Violin_Wafer
D8A169-13 Overall Prober_IDReg Wafermap
D8A169-14 Prober_AllGrade
D8A169-15 Prober_AllGrade_L1 Prober_TCO
D8A169-16 Prober_AllGrade_L2 -25000 15000 [minjmax
D8A169-17 Prober_Class
D8A169-18 Prober_Code
D8A169-19 Prober_M_1211_Loop2
D8AL169-20
DRATR9-2T [Export Wafer Data]

SENSIRION

THE SENSOR COMPANY

SENSIRION

THE SENSOR COMPANY

Example: Data Analysis - Wafer Visualization

Prober_TCO

Selected Wafers

B Prober_TCO
10000 T o E
[

i =

-5000 LJ |::| : __/

B -+ T T T
1 i
;

g] o2 o A0

v?,t&’g @9@ v@‘@ O%V\é, oﬁv\bg

18112016 at 16:34

Wafer

D8A169-12
Prober_TCO
30
60
B 9%
S
£
1
150

30 60 90 120
XCord

18.11.2016 at 16:33

15000

10000

5000

-5000

~-10000

-15000

-20000

-25000

- DBA169-08

D8A169-09
- DBA169-10
25051 . D8A169-12

- D8A169-13

Scatter

ol

o0 o®
A2 2%

18.11.2016 at 16:36.

i3
BRI

Prober_TCO

SENSIRION

THE SENSOR COMPANY

Example: Data Analysis - Wafer Visualization

Probecard T_05_1 2 7 L4: VOL_Strength_DIOLV1 [V]

o
0135 j 5
0130 1
0125 5
0120 20
o1s| 5
0110 0
o108 — sta. geviatian] £
0100] — e | a0
o 10 20 30 40 50 60
0115 0120 0125 Channel-Nbr 45
1600 T_05_1_2_7_L4: VOL Strength_DIOLV1 [V] 50
N,,=3191 H 55
1400 p=0.12267 b 50
md =0.11877 1 &
1200 0o =003459 0
1000 rp =0.04051 b
'
Y=00.9T% . 8
800 : 8
,‘.
& %0
0015 A %
\ i
0}) ! 100
h ' 5 &
200 : '- 0 2 4 6 B 1012141618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
H
h '
ol H
00 01 02 03 04 0102 0108 0114 0120 0126 0132 0138

SENSIRION

THE SENSOR COMPANY

Pandas and PySide are very powerful tools for data analysis

Standardize the input data format (and convert if necessary) and data storage

— Consistent evaluation, always find your data

Standardize the presentation of data
— Everybody understands the plots

We had a problem with noise on certain hardware:
Guter Kanal (BW 60KHz) Schlechter Kanal (BW 60KHz)

| ‘

Example: Noise Analysis on Electronics

So we recorded the noise and analysed it:

import pandas as pd
import matplotlib.pyplot as plt

import numpy as np

some math. ..
def AggregateSpectralEnergy(x):
fft = np.fft.fft(x.values)

fs = 1.0/T
N = len(x.values)
dF = (fs/N)

return np.sum(np.abs(fft[np.floor(lowPass/dF) :np.floor(N/2)])*2.0/N)

SENSIRION

THE SENSOR COMPANY

Example: Noise Analysis on Electronics

some data...

for i in range(8):
fine.append(pd.read_csv(fineFiles+str(i)+'.csv'))
fine[i] .drop('Sample', 1, inplace = True)
fine[i] .columns = fine[i].columns.astype(int)
crappy . append (pd.read_csv(crappyFiles+str(i)+'.csv'))
crappy[i] .drop('Sample', 1, inplace = True)
crappy[il.columns = crappyl[il.columns.astype(int)

In between more magic and ad hoc code ;)

SENSIRION

THE SENSOR COMPANY

some plotting. ..

axG.pcolor(np.log(goodFrame.values), cmap=plt.cm.Reds, vmin=np.log(1.0), w
axG.set_x1im([0, 32])

axG.set_ylim([0, 8])

axG.set_ylabel('I0 pin')

axG.set_yticks(np.arange(0.5, len(goodFrame.index), 1))
axG.set_yticklabels([str(s) for s in goodFrame.index])
axG.set_xticks(np.arange(0.5, len(goodFrame.columns), 1))
axG.set_xticklabels([str(s) for s in goodFrame.columns])
axG.set_xlabel('Dut Channel No.')

axG.set_title('Relative spectral energy Pilatus South')
plt.show()

And finally...
SENSIRION

THE SENSOR COMPANY

Example: Noise Analysis on Electronics

SENSIRION

THE SENSOR COMPANY

We found the noise was specific to some nearby channels
An external PTC sensor was coupling noise into these channels
A layout change fixed the issue

The "measure and analyze offline” approach saved time!

Example: Automated Hardware Testing

= A lot of time one needs to qualify a small number of prototypes (Sensors, some
electronics board, ...)

= Most of the times this involves ad-hoc measurement setups

SENSIRION

THE SENSOR COMPANY

Ll —

! | | ;
‘ - J W Se— - —
Ll . ; <= .-
} !n =, B, 7 & .

|
)

\ -.

THE SENSOR COMPANY

Example: Automated Hardware Testing

= |ts tempting to do these tests manually
= | only have to do it for 5 boards, automating it doesn’t scale

= You as software engineers should know the benefits of automated tests ;)

SENSIRION

THE SENSOR COMPANY

= |ts tempting to do these tests manually
= | only have to do it for 5 boards, automating it doesn’t scale

= You as software engineers should know the benefits of automated tests ;)

1 | l

2ilzfznarator.nat

= Lots of electronic lab equipment supports either

RS232 (if it is old)

USB

LXI3 over Ethernet (if it is less old)

If you are lucky it supports the IVI* API

If you are really lucky your device is even supported by python-ivi® (If your device is
not listed, just try one with a similar name!)

*https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation

“http://www.ivifoundation.org/

*https://github. com/python-ivi/python-ivi

SENSIRION

THE SENSOR COMPANY

https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
http://www.ivifoundation.org/
https://github.com/python-ivi/python-ivi

= Lots of electronic lab equipment supports either
= RS232 (if it is old)
= USB
= LXI® over Ethernet (if it is less old)
= If you are lucky it supports the IVI* API
= If you are really lucky your device is even supported by python-ivi® (If your device is
not listed, just try one with a similar name!)

= So lets automate it and put everything in a jupyter notebook!

*https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
“http://www.ivifoundation.org/
*https://github. com/python-ivi/python-ivi

https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
http://www.ivifoundation.org/
https://github.com/python-ivi/python-ivi

e

. TH0EC 22 020 2016
1600 4000 oyt @150V

Agilent Tachaolag
[IRECVA) IECUA | [

Valve Voltage Messurement

o 13300 falae - 0n
BiE 30 11 day: Thevon
i e

Vaive Current Measurement

ress-Switches

70111

AglentTechaioies L
[REVA REVA Y

5 25008 1000V Swp & E) 250V

Edge Trgge M
> Sege | e
) ¥

2.5 Miscellaneous

+ Connect 36R valve and all required sensors before starting these tests

251 Product-Type / HW-Version

Product type: 8 > 0K

252 VIN Voltage Measurement

Error atata bit 2 8 13.30V: True
Error atata bit 2 8 13.70V: Falss > ORI
Error atate bit 2 8 25.80V: Falss > DKt
Error state bit 2 0 26.20V; Trua > OK!

253 Valve Voltage Measurement
Error state bit 3 0 13.50V: Fal
Error state bit 3 0 11.40V: True
Error state bit 3 0 26.00V: False

254 Valve Current Measurement

Successtully exscuted valve auto setup!

255 Address-Switches

+ Set both switches to position 0
« Start the seript

Breithorn PressurcContraller PCB 1272515 V1

/15

0170111

+ Rotate address switch x1 from positions 0o 9 within 10 seconds
« Wait until the DUT supply is switched off and on again

+ Rotate address switch x10 from positions 0 to 9 within 10 seconds
+ Analyze the plot by yourself (there is no automatic validation)!

256 Purge/Close Valve

258 LEDs

+ Step 1: Green = On, Red = Off
* Step2: Green = Blinking, Red = On

Doma. Hava you varifiad that the LEDs are working proparly?

Breithorn PressurcCantraller PCB 12

Reproducible measurements

Scales for the next 10 prototype you have to test

Test description / instructions stored together with code
No fiddling with oscilloscope settings

You can hand it off to a non-engineer

Example: Verifying Embedded Algorithms

= Modules consisting of

= Low Power pC
= Sensor
= Some Peripheral

= Used for

= Compensation
= Additonal communication protocols

= Demonstrators

Smart Gadget Development Kit®

6
https://www.sensirion.com/products/humidity-sensors/development-kit/
P P v P SENSIRION

THE SENSOR COMPANY

https://www.sensirion.com/products/humidity-sensors/development-kit/

Example: Verifying Embedded Algorithms

= Reference compensation implemented in Python
= Port to embedded system (C / C++)

= No floating point
= Constrained resources

= How do we make sure it still works the same?

’SPS-2016 Armin Rigo — CFFI: Call C from Python
SENSIRION

THE SENSOR COMPANY

https://www.youtube.com/watch?v=xf7BpIKamgY

Example: Verifying Embedded Algorithms

= Reference compensation implemented in Python
= Port to embedded system (C / C++)

= No floating point
= Constrained resources

= How do we make sure it still works the same?
Use CFFI” to call the C-code!

’SPS-2016 Armin Rigo — CFFI: Call C from Python

SENSIRION

THE SENSOR COMPANY

https://www.youtube.com/watch?v=xf7BpIKamgY

Example: Verifying Embedded Algorithms - A CFFI hack

= Plug all your includes together into A11Includes.h
= Preprocess them with gcc -E

AllIncludes.txt: AllIncludes.h
gcc -E -P -I${INCLUDE_DIR} AllIncludes.h > AllIncludes.txt

= Call it easily with CFFI

from cffi import FFI

ffi = FFIQO

lib = ffi.dlopen("./your_library.so")

with open('AllIncludes.txt') as f:
ffi.cdef(f.read())

1ib.1ib_call()

SENSIRION

THE SENSOR COMPANY

Example: Verifying Embedded Algorithms - Plotting from Python

—— compensated

1200 — o

1000 =

800~

600 =

400 =

200

/

0= _-—4.,-/ S — _ A

L L L L L L L e e e e e e e DL L L L L L e L e
0551111622 27)333844!5055°61/667277 8389 9410(10511111€1221211 3:13¢1441 5(15E16 11671 717 €18:18¢19:20120¢21:21722:22123:23 241252526 26'27:27850

SENSIRION

THE SENSOR COMPANY

Growing Pains

SENSIRION

THE SENSOR COMPANY

In the beginning everything was easy...

= It was decided we use the Python(x,y) distribution
= Python(x,y) 2.6 was installed by everyone

SENSIRION

THE SENSOR COMPANY

It was decided we use the Python(x,y) distribution

Python(x,y) 2.6 was installed by everyone
— Every script run on every machine
— Nobody had to care about dependencies, everything was there

Python(x,y) ships with lots of libraries for the same purpose
— Sharing code gets difficult
Python(x,y) 2.6 started to getting outdated

= |Individuals required newer pandas version
= Some special packages only provided wheels for python 2.7 and upwards

= Python(x,y) ships with lots of libraries for the same purpose
— Sharing code gets difficult
= Python(x,y) 2.6 started to getting outdated

= |Individuals required newer pandas version
= Some special packages only provided wheels for python 2.7 and upwards

— Parts of Sensirion upgraded to Python(x,y) 2.7

= Python(x,y) ships with lots of libraries for the same purpose
— Sharing code gets difficult
= Python(x,y) 2.6 started to getting outdated

= |Individuals required newer pandas version
= Some special packages only provided wheels for python 2.7 and upwards

— Parts of Sensirion upgraded to Python(x,y) 2.7

= Suddenly code was running only inside the individual groups

Soon every group had their own Python Setup instructions:

= Check that the directories

C:\work\SVN\Pressure\Libraries
C:\work\SVN\Pressure\Tools
C:\work\SVN\DevelopmentPythonToolbox
are checked out from their respective directories.
= copy the folder C: /work/SVN/PythonDevices and set PYTHONPATH to it.
Copy .NET DLLs and enter the path to them in some config

= Piles and piles of hacks

Subversion as Package Management

People even started inventing their own SVN based packaging and distribution system:

logger
__init__.py
tags
__init__.py
vli_0_0
__init__.py
logger.py
vl _0_4
__init__.py
logger.py
trunk
__init__.py

logger.py :%Eegggso.! BDLQAN

People even started inventing their own SVN based packaging and distribution system:

import sr830_driver.tags.v0_1_2.sr830 as sr830

logger
__init__.py import nidagmx_driver.tags.vO_1_1.nidagmx as nidaqmx
tags
. . |
__init__.py = This worked surprisingly good!
v1_0_0 = But is a maintenance hell!
--init__.py = In tags only import from other tags
logger.py))
= From trunk import from wherever you like
vi 0 4
__init__.py
logger.py
trunk
__init__.py

logger.py

Some Pain Points

= pythonnet® is awesome! Allows to call into existing .NET code

Shttp: th t.github.i
p://pythonnet.github.io/ SENSIRION

THE SENSOR COMPANY

http://pythonnet.github.io/

= pythonnet® is awesome! Allows to call into existing .NET code
= Not so awesome with dependencies between .NET libraries
= Classic diamond dependency hell

= Sometimes random runtime issues with .NET libraries

®http://pythonnet.github.io/

http://pythonnet.github.io/

Some Examples of Over-engineering - Pilatus

= We have an in-house developed test platform called Pilatus
= Used both in production and development

SENSIRION

THE SENSOR COMPANY

Some Examples of Over-engineering - Pilatus

C# Framework

l

Generated C# bindings

|

Zeroc-Ice interface
definition

|

Generated C++
bindings

= We use a RPC framework
(https://zeroc.com) to
communicate with it via TCP/IP

= One defines interfaces and can
generate code for C#, C++, ...

= Lots of C# code for production

SENSIRION

THE SENSOR COMPANY

https://zeroc.com

Some Examples of Over-engineering - Pilatus

C# Framework

l

Generated C# bindings

|

Zeroc-Ice interface
definition

|

Generated C++
bindings

We use a RPC framework
(https://zeroc.com) to
communicate with it via TCP/IP

One defines interfaces and can
generate code for C#, C++, ...

Lots of C# code for production

Lets reuse all this awesome production
code in the lab!

SENSIRION

THE SENSOR COMPANY

https://zeroc.com

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!

Python Application

l

Python Wrapper

I

C# Framework

l

Generated C# bindings

l

Zeroc-Ice interface
definition

l

Generated C++
bindings

SENSIRION

THE SENSOR COMPANY

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!

= A change in the Firmware needed to
propagate to the top

= Interference with other .NET code
(dependency problem)

= In the lab you actually need low-level
access

Python Application

l

Python Wrapper

I

C# Framework

l

Generated C# bindings

l

Zeroc-Ice interface
definition

l

Generated C++
bindings

SENSIRION

THE SENSOR COMPANY

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!

A change in the Firmware needed to
propagate to the top

Interference with other .NET code
(dependency problem)
In the lab you actually need low-/level

access

| call this Lasagne-code (Too many
layers)

Python Application

l

Python Wrapper

I

C# Framework

l

Generated C# bindings

l

Zeroc-Ice interface
definition

l

Generated C++
bindings

SENSIRION

THE SENSOR COMPANY

Some Examples of Over-engineering - Pilatus

A — O

Some Examples of Over-engineering - Pilatus

The solution: Generate Python bindings

and

use them

No interference with other .NET using
libraries

Immediate access to new functionality

As low-level as you want

Python Application

|

Generated Python
bindings + Helpers

l

Zeroc-Ice interface
definition

|

Generated C++
bindings

5IRION

DR COMPANY

Don't use a big Python distribution which ships piles and piles of libraries.
Standardize your base install, but keep it up to date!
If it is simple to implement in pure python, do it!

Build proper Python packages for reusable libraries!

Our Solution

SENSIRION

THE SENSOR COMPANY

Our own Python User Group

= Python User Group (PUG) with experienced
Python user from every group
— Gather and distribute Python knowledge

inside Sensirion

SENSIRION

eeeeeeeeeeeeeeee

= Python User Group (PUG) with experienced
Python user from every group
— Gather and distribute Python knowledge

inside Sensirion

Sensiron PUG mascot

Python User Group (PUG) with experienced
Python user from every group

— Gather and distribute Python knowledge
inside Sensirion

Provide infrastructure

Coordinate Sensiron wide updates of the

Python base installation

Collect common requirements and implement

reusable packages

Sensiron PUG mascot

Our Solution

Packaging infrastructure

SENSIRION

THE SENSOR COMPANY

We provide a devpi® server instance

= PyPI server and packaging / testing / release tool
= Mirrors pypi.org (performance)
= One staging / stable index per group

= Provide our own wheels for hard to compile packages (numpy, scipy, ...)

*http://doc.devpi.net/latest/

pypi.org
http://doc.devpi.net/latest/

Packaging infrastructure - devpi

Index Relationship Diagram

PyPl CDN

root/pypi
Z 7

Group Indices

Developer S ENSIRION

THE SENSOR COMPANY

Packaging infrastructure - Jenkins / GitLab

We use Jenkins and GitLab Cl to upload nightly builds to devpi/staging
Update version to 0.0.3

() 5builds from master in 23 seconds (queued for 3 seconds)
< 95e82a43 .. Iy

Pipeline Builds 5

Prepare Build Deploy
© generat © ®-
© ©

SENSIRION

THE SENSOR COMPANY

Our Solution

Standardization

SENSIRION

THE SENSOR COMPANY

Standardize File Formats

= A lot of Engineers used some kind of CSV formats for data storage

SENSIRION

THE SENSOR COMPANY

= A lot of Engineers used some kind of CSV formats for data storage
— Created the Experiment Data Format (EDF). Our internal standard for storing
measurements from experiments.
— Basically CSV with standardized meta data.

= USP of EDF: Can be opened with Excel!

EdfVersion=4.0

Date=2015-04-23T13:07:10.520000+02:00
Type=float, Format=.3f Type=int
Epoch_UTC Some_Value

1429787230.005 1

Standardize File Storage

= Storing the EDF files with standardized metadata and storage place

= Index them with solr?

10
https://1 . he. 1
ps://lucene.apache.org/solr/ SENSIRION

THE SENSOR COMPANY

https://lucene.apache.org/solr/

Standardize File Storage

User frontend Backend / Infrastructure
Metadata
' logger module > g
L L
Measurement (eg. pyth_on .—EDF . Labdata share [—pp»} Edf Crawler
I datahandling. (e.g. time series) q
d datalogging) > v
Raw data *
Solr Index
Data storage
Data analysis
koalas
python module
pandas J
dataframes ‘
raw data
ipython notebook data access solrclient
(e.g. query get ids, — <l python module |[@—~
get raw data) python module
pandas
dataframes
meta data
pandas python
module

Standardize File Storage

In [1]: from data_access import solr, load_edf

In [2]: solr.get_fns_by_keywords({'DummyFileType': 'Training'})

Out [2]:
[u'/media/Labdata/DummyForTraining/20160330T161152Z_Example.edf',
u'/media/Labdata/DummyForTraining/201603291633_ExampleEDF.edf',
u'/media/Labdata/DummyForTraining/201603291620_ExampleEDF.edf ']

SENSIRION

THE SENSOR COMPANY

Standardize File Storage

In [1]: from data_access import solr, load_edf

In [2]: solr.get_fns_by_keywords({'DummyFileType': 'Training'})
Out[2]:
[u'/media/Labdata/DummyForTraining/20160330T161152Z_Example.edf',
u'/media/Labdata/DummyForTraining/201603291633_ExampleEDF.edf',
u'/media/Labdata/DummyForTraining/201603291620_ExampleEDF.edf ']

In [3]: load_edf.get_sensordfs_from_sensor_ids("TrainingDummyO1",
start_date=datetime (2016, 3, 28)).head(3)

Out [14] :

SomeValue
Epoch_UTC
2016-03-29 14:09:44.560 0
2016-03-29 14:09:44.661 1

2016-03-29 14:09:44.761 2 SENSIRION

THE SENSOR COMPANY

Python is awesome for

= automated testing in the lab
= data analysis
= creating beautiful plots ;)

Try to establish a common base of packages, but keep it up to date
Use proper python packages for reusable code

Standardize your data formats

Thank youl!

WWW.sensirion.com

SENSIRION

THE SENSOR COMPANY

www.sensirion.com

