

Python in the Hardware Industry

Raphael Nestler (@rnestler on)
February 17, 2017

Sensirion AG

Outline

1. How Sensirion Uses Python

2. Growing Pains

3. Our Solution

How Sensirion Uses Python

An Embarrassingly Short Introduction To Sensirion

We turn these:

• Custom ASIC
• Produced with a standard

CMOS process
• Delivered to us as wafers

An Embarrassingly Short Introduction To Sensirion

We turn these:

• Custom ASIC
• Produced with a standard

CMOS process
• Delivered to us as wafers

An Embarrassingly Short Introduction To Sensirion

With lots of magic:

• Testing the ASIC
• Cutting the wafer
• Adding out magic sauce (the sensor)
• Calibrate

An Embarrassingly Short Introduction To Sensirion

Into those:

• The final sensor
• Integrated on one chip
• Fully calibrated
• Digital interface to measure

And Make Them Tinier And Tinier...

We Are a Hardware Company

• We produce Hardware not Software

• But we use in house developed Software everywhere
• Production critical Software written in C#
• Python used in automation, data-analysis, R&D purpose, laboratory measurements

→ Written by non Software Engineers

We Are a Hardware Company

• We produce Hardware not Software
• But we use in house developed Software everywhere

• Production critical Software written in C#
• Python used in automation, data-analysis, R&D purpose, laboratory measurements

→ Written by non Software Engineers

We Are a Hardware Company

• We produce Hardware not Software
• But we use in house developed Software everywhere

• Production critical Software written in C#
• Python used in automation, data-analysis, R&D purpose, laboratory measurements

→ Written by non Software Engineers

Life Cycle of a Sensor

During research and development a new sensor goes roughly through these (horribly
simplified) stages:

1. Early experimentation
2. First prototype
3. First Silicon
4. Qualification
5. 0-Series
6. Final Product

During steps 1-4 lots of software work is done in the lab with Python.

Life Cycle of a Sensor

During research and development a new sensor goes roughly through these (horribly
simplified) stages:

1. Early experimentation
2. First prototype
3. First Silicon
4. Qualification
5. 0-Series
6. Final Product

During steps 1-4 lots of software work is done in the lab with Python.

How Sensirion Uses Python

Some Examples

Example: Data Analysis

• Pandas1 is very powerful for data processing
• jupyter notebooks are awesome for interactive work
• PyQt (PySide2) can be used to create GUIs for recurring analysis
• Two Types of Data

• Wafer (Sensor) data
• Experiment data

1Python Data Analysis Library: http://pandas.pydata.org/
2Python binding of the cross-platform GUI toolkit Qt: https://wiki.qt.io/PySide

http://pandas.pydata.org/
https://wiki.qt.io/PySide

Example: Data Analysis - Wafer Data

• Data comes from many sources in many formats
• Supplier delivered data (CSV, Excel, JSON, ...)
• Sensirion Internal Data (SQL, CSV)

• Formats change over time! (Even from the same supplier)

→ Reformat to standard csv format
→ Store it systematically

• Python Scripts with quick iterations (New data → new workarounds for
conversion)

Example: Data Analysis - Wafer Data

• Data comes from many sources in many formats
• Supplier delivered data (CSV, Excel, JSON, ...)
• Sensirion Internal Data (SQL, CSV)

• Formats change over time! (Even from the same supplier)
→ Reformat to standard csv format
→ Store it systematically

• Python Scripts with quick iterations (New data → new workarounds for
conversion)

Example: Data Analysis - Wafer Visualization

Example: Data Analysis - Wafer Visualization

Example: Data Analysis - Wafer Visualization

Example: Data Analysis - Conclusions

• Pandas and PySide are very powerful tools for data analysis
• Standardize the input data format (and convert if necessary) and data storage

→ Consistent evaluation, always find your data
• Standardize the presentation of data

→ Everybody understands the plots

Example: Noise Analysis on Electronics

We had a problem with noise on certain hardware:

Example: Noise Analysis on Electronics

So we recorded the noise and analysed it:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
...
some math...
def AggregateSpectralEnergy(x):

fft = np.fft.fft(x.values)
fs = 1.0/T
N = len(x.values)
dF = (fs/N)
return np.sum(np.abs(fft[np.floor(lowPass/dF):np.floor(N/2)])*2.0/N)

Example: Noise Analysis on Electronics

some data...
for i in range(8):

fine.append(pd.read_csv(fineFiles+str(i)+'.csv'))
fine[i].drop('Sample', 1, inplace = True)
fine[i].columns = fine[i].columns.astype(int)
crappy.append(pd.read_csv(crappyFiles+str(i)+'.csv'))
crappy[i].drop('Sample', 1, inplace = True)
crappy[i].columns = crappy[i].columns.astype(int)

In between more magic and ad hoc code ;)

Example: Noise Analysis on Electronics

some plotting...
axG.pcolor(np.log(goodFrame.values), cmap=plt.cm.Reds, vmin=np.log(1.0), vmax=np.log(23.0))
axG.set_xlim([0, 32])
axG.set_ylim([0, 8])
axG.set_ylabel('IO pin')
axG.set_yticks(np.arange(0.5, len(goodFrame.index), 1))
axG.set_yticklabels([str(s) for s in goodFrame.index])
axG.set_xticks(np.arange(0.5, len(goodFrame.columns), 1))
axG.set_xticklabels([str(s) for s in goodFrame.columns])
axG.set_xlabel('Dut Channel No.')
axG.set_title('Relative spectral energy Pilatus South')
plt.show()

And finally...

Example: Noise Analysis on Electronics

Example: Noise Analysis on Electronics

• We found the noise was specific to some nearby channels
• An external PTC sensor was coupling noise into these channels
• A layout change fixed the issue
• The ”measure and analyze offline” approach saved time!

Example: Automated Hardware Testing

• A lot of time one needs to qualify a small number of prototypes (Sensors, some
electronics board, ...)

• Most of the times this involves ad-hoc measurement setups

Example: Automated Hardware Testing

Example: Automated Hardware Testing

• Its tempting to do these tests manually
• I only have to do it for 5 boards, automating it doesn’t scale

• You as software engineers should know the benefits of automated tests ;)

Example: Automated Hardware Testing

• Its tempting to do these tests manually
• I only have to do it for 5 boards, automating it doesn’t scale

• You as software engineers should know the benefits of automated tests ;)

Example: Automated Hardware Testing

• Lots of electronic lab equipment supports either
• RS232 (if it is old)
• USB
• LXI3 over Ethernet (if it is less old)
• If you are lucky it supports the IVI4 API
• If you are really lucky your device is even supported by python-ivi5 (If your device is

not listed, just try one with a similar name!)

• So lets automate it and put everything in a jupyter notebook!

3https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
4http://www.ivifoundation.org/
5https://github.com/python-ivi/python-ivi

https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
http://www.ivifoundation.org/
https://github.com/python-ivi/python-ivi

Example: Automated Hardware Testing

• Lots of electronic lab equipment supports either
• RS232 (if it is old)
• USB
• LXI3 over Ethernet (if it is less old)
• If you are lucky it supports the IVI4 API
• If you are really lucky your device is even supported by python-ivi5 (If your device is

not listed, just try one with a similar name!)

• So lets automate it and put everything in a jupyter notebook!

3https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
4http://www.ivifoundation.org/
5https://github.com/python-ivi/python-ivi

https://en.wikipedia.org/wiki/LAN_eXtensions_for_Instrumentation
http://www.ivifoundation.org/
https://github.com/python-ivi/python-ivi

Example: Automated Hardware Testing

Example: Automated Hardware Testing - PDF export

2017-01-11

2.5 Miscellaneous

• Connect 36R valve and all required sensors before starting these tests.

2.5.1 Product-Type / HW-Version
������� ����� � ��� ���

2.5.2 VIN Voltage Measurement
����� ����� ��� � � ������� ���� ��� ���

����� ����� ��� � � ������� ����� ��� ���

����� ����� ��� � � ������� ����� ��� ���

����� ����� ��� � � ������� ���� ��� ���

2.5.3 Valve Voltage Measurement
����� ����� ��� � � ������� ����� ��� ���

����� ����� ��� � � ������� ���� ��� ���

����� ����� ��� � � ������� ����� ��� ���

2.5.4 Valve Current Measurement
������������ �������� ����� �����������

2.5.5 Address-Switches
• Set both switches to position 0
• Start the script

Breithorn PressureController PCB 1272518 V1 14 / 15

2017-01-11

• Rotate address switch x1 from positions 0 to 9 within 10 seconds
• Wait until the DUT supply is switched off and on again
• Rotate address switch x10 from positions 0 to 9 within 10 seconds
• Analyze the plot by yourself (there is no automatic validation)!

2.5.6 Purge/Close Valve
TODO

2.5.7 Device Error State
������ ����� ������ � ��� ���

2.5.8 LEDs
• Step 1: Green = On, Red = Off
• Step 2: Green = Blinking, Red = On

����� ���� ��� �������� ���� ��� ���� ��� ������� ���������

Breithorn PressureController PCB 1272518 V1 15 / 15

Example: Automated Hardware Testing

• Reproducible measurements
• Scales for the next 10 prototype you have to test
• Test description / instructions stored together with code
• No fiddling with oscilloscope settings
• You can hand it off to a non-engineer

Example: Verifying Embedded Algorithms

Smart Gadget Development Kit6

• Modules consisting of
• Low Power µC
• Sensor
• Some Peripheral

• Used for
• Compensation
• Additonal communication protocols
• Demonstrators
• ..

6https://www.sensirion.com/products/humidity-sensors/development-kit/

https://www.sensirion.com/products/humidity-sensors/development-kit/

Example: Verifying Embedded Algorithms

• Reference compensation implemented in Python
• Port to embedded system (C / C++)

• No floating point
• Constrained resources

• How do we make sure it still works the same?

• Use CFFI7 to call the C-code!

7SPS-2016 Armin Rigo – CFFI: Call C from Python

https://www.youtube.com/watch?v=xf7BpIKamgY

Example: Verifying Embedded Algorithms

• Reference compensation implemented in Python
• Port to embedded system (C / C++)

• No floating point
• Constrained resources

• How do we make sure it still works the same?
• Use CFFI7 to call the C-code!

7SPS-2016 Armin Rigo – CFFI: Call C from Python

https://www.youtube.com/watch?v=xf7BpIKamgY

Example: Verifying Embedded Algorithms - A CFFI hack

• Plug all your includes together into AllIncludes.h

• Preprocess them with gcc -E
AllIncludes.txt: AllIncludes.h
gcc -E -P -I${INCLUDE_DIR} AllIncludes.h > AllIncludes.txt

• Call it easily with CFFI
from cffi import FFI
ffi = FFI()
lib = ffi.dlopen("./your_library.so")
with open('AllIncludes.txt') as f:

ffi.cdef(f.read())
lib.lib_call()

Example: Verifying Embedded Algorithms - Plotting from Python

Growing Pains

In the beginning everything was easy...

• It was decided we use the Python(x,y) distribution
• Python(x,y) 2.6 was installed by everyone

→ Every script run on every machine
→ Nobody had to care about dependencies, everything was there

In the beginning everything was easy...

• It was decided we use the Python(x,y) distribution
• Python(x,y) 2.6 was installed by everyone

→ Every script run on every machine
→ Nobody had to care about dependencies, everything was there

Until Time Passed

• Python(x,y) ships with lots of libraries for the same purpose
→ Sharing code gets difficult

• Python(x,y) 2.6 started to getting outdated
• Individuals required newer pandas version
• Some special packages only provided wheels for python 2.7 and upwards
• ...

→ Parts of Sensirion upgraded to Python(x,y) 2.7

• Suddenly code was running only inside the individual groups

Until Time Passed

• Python(x,y) ships with lots of libraries for the same purpose
→ Sharing code gets difficult

• Python(x,y) 2.6 started to getting outdated
• Individuals required newer pandas version
• Some special packages only provided wheels for python 2.7 and upwards
• ...

→ Parts of Sensirion upgraded to Python(x,y) 2.7

• Suddenly code was running only inside the individual groups

Until Time Passed

• Python(x,y) ships with lots of libraries for the same purpose
→ Sharing code gets difficult

• Python(x,y) 2.6 started to getting outdated
• Individuals required newer pandas version
• Some special packages only provided wheels for python 2.7 and upwards
• ...

→ Parts of Sensirion upgraded to Python(x,y) 2.7

• Suddenly code was running only inside the individual groups

Custom Python Installation per Group

Soon every group had their own Python Setup instructions:

• Check that the directories

C:\work\SVN\Pressure\Libraries
C:\work\SVN\Pressure\Tools
C:\work\SVN\DevelopmentPythonToolbox

are checked out from their respective directories.
• copy the folder C:/work/SVN/PythonDevices and set PYTHONPATH to it.
• Copy .NET DLLs and enter the path to them in some config
• ...
• Piles and piles of hacks

Subversion as Package Management

People even started inventing their own SVN based packaging and distribution system:

logger
��� __init__.py
��� tags
� ��� __init__.py
� ��� v1_0_0
� � ��� __init__.py
� � ��� logger.py
� ...
� ��� v1_0_4
� ��� __init__.py
� ��� logger.py
��� trunk
��� __init__.py
��� logger.py

import sr830_driver.tags.v0_1_2.sr830 as sr830
import nidaqmx_driver.tags.v0_1_1.nidaqmx as nidaqmx

• This worked surprisingly good!
• But is a maintenance hell!
• In tags only import from other tags
• From trunk import from wherever you like

Subversion as Package Management

People even started inventing their own SVN based packaging and distribution system:

logger
��� __init__.py
��� tags
� ��� __init__.py
� ��� v1_0_0
� � ��� __init__.py
� � ��� logger.py
� ...
� ��� v1_0_4
� ��� __init__.py
� ��� logger.py
��� trunk
��� __init__.py
��� logger.py

import sr830_driver.tags.v0_1_2.sr830 as sr830
import nidaqmx_driver.tags.v0_1_1.nidaqmx as nidaqmx

• This worked surprisingly good!
• But is a maintenance hell!
• In tags only import from other tags
• From trunk import from wherever you like

Some Pain Points

• pythonnet8 is awesome! Allows to call into existing .NET code

• Not so awesome with dependencies between .NET libraries
• Classic diamond dependency hell
• Sometimes random runtime issues with .NET libraries

8http://pythonnet.github.io/

http://pythonnet.github.io/

Some Pain Points

• pythonnet8 is awesome! Allows to call into existing .NET code
• Not so awesome with dependencies between .NET libraries
• Classic diamond dependency hell
• Sometimes random runtime issues with .NET libraries

8http://pythonnet.github.io/

http://pythonnet.github.io/

Some Examples of Over-engineering - Pilatus

• We have an in-house developed test platform called Pilatus
• Used both in production and development

Some Examples of Over-engineering - Pilatus

• We use a RPC framework
(https://zeroc.com) to
communicate with it via TCP/IP

• One defines interfaces and can
generate code for C#, C++, ...

• Lots of C# code for production

• Lets reuse all this awesome production
code in the lab!

https://zeroc.com

Some Examples of Over-engineering - Pilatus

• We use a RPC framework
(https://zeroc.com) to
communicate with it via TCP/IP

• One defines interfaces and can
generate code for C#, C++, ...

• Lots of C# code for production
• Lets reuse all this awesome production

code in the lab!

https://zeroc.com

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!
• A change in the Firmware needed to

propagate to the top
• Interference with other .NET code

(dependency problem)
• In the lab you actually need low-level

access

Some Examples of Over-engineering - Pilatus

Lets add some Python to it!
• A change in the Firmware needed to

propagate to the top
• Interference with other .NET code

(dependency problem)
• In the lab you actually need low-level

access
• I call this Lasagne-code (Too many

layers)

Some Examples of Over-engineering - Pilatus

Some Examples of Over-engineering - Pilatus

The solution: Generate Python bindings
and use them

• No interference with other .NET using
libraries

• Immediate access to new functionality
• As low-level as you want

Lesson Learned

• Don’t use a big Python distribution which ships piles and piles of libraries.
• Standardize your base install, but keep it up to date!
• If it is simple to implement in pure python, do it!
• Build proper Python packages for reusable libraries!

Our Solution

Our own Python User Group

• Python User Group (PUG) with experienced
Python user from every group
→ Gather and distribute Python knowledge
inside Sensirion

Our own Python User Group

• Python User Group (PUG) with experienced
Python user from every group
→ Gather and distribute Python knowledge
inside Sensirion

Sensiron PUG mascot

Our own Python User Group

• Python User Group (PUG) with experienced
Python user from every group
→ Gather and distribute Python knowledge
inside Sensirion

• Provide infrastructure
• Coordinate Sensiron wide updates of the

Python base installation
• Collect common requirements and implement

reusable packages

Sensiron PUG mascot

Our Solution

Packaging infrastructure

Packaging infrastructure - devpi

We provide a devpi9 server instance

• PyPI server and packaging / testing / release tool
• Mirrors pypi.org (performance)
• One staging / stable index per group
• Provide our own wheels for hard to compile packages (numpy, scipy, ...)

9http://doc.devpi.net/latest/

pypi.org
http://doc.devpi.net/latest/

Packaging infrastructure - devpi

Packaging infrastructure - Jenkins / GitLab

We use Jenkins and GitLab CI to upload nightly builds to devpi/staging

Our Solution

Standardization

Standardize File Formats

• A lot of Engineers used some kind of CSV formats for data storage

→ Created the Experiment Data Format (EDF). Our internal standard for storing
measurements from experiments.
→ Basically CSV with standardized meta data.

• USP of EDF: Can be opened with Excel!

EdfVersion=4.0
Date=2015-04-23T13:07:10.520000+02:00
Type=float, Format=.3f Type=int
Epoch_UTC Some_Value
1429787230.005 1

Standardize File Formats

• A lot of Engineers used some kind of CSV formats for data storage
→ Created the Experiment Data Format (EDF). Our internal standard for storing
measurements from experiments.
→ Basically CSV with standardized meta data.

• USP of EDF: Can be opened with Excel!

EdfVersion=4.0
Date=2015-04-23T13:07:10.520000+02:00
Type=float, Format=.3f Type=int
Epoch_UTC Some_Value
1429787230.005 1

Standardize File Storage

• Storing the EDF files with standardized metadata and storage place
• Index them with solr10

10https://lucene.apache.org/solr/

https://lucene.apache.org/solr/

Standardize File Storage

Standardize File Storage

In [1]: from data_access import solr, load_edf
In [2]: solr.get_fns_by_keywords({'DummyFileType': 'Training'})
Out[2]:
[u'/media/Labdata/DummyForTraining/20160330T161152Z_Example.edf',
u'/media/Labdata/DummyForTraining/201603291633_ExampleEDF.edf',
u'/media/Labdata/DummyForTraining/201603291620_ExampleEDF.edf']

In [3]: load_edf.get_sensordfs_from_sensor_ids("TrainingDummy01",
start_date=datetime(2016, 3, 28)).head(3)

Out[14]:
SomeValue

Epoch_UTC
2016-03-29 14:09:44.560 0
2016-03-29 14:09:44.661 1
2016-03-29 14:09:44.761 2

Standardize File Storage

In [1]: from data_access import solr, load_edf
In [2]: solr.get_fns_by_keywords({'DummyFileType': 'Training'})
Out[2]:
[u'/media/Labdata/DummyForTraining/20160330T161152Z_Example.edf',
u'/media/Labdata/DummyForTraining/201603291633_ExampleEDF.edf',
u'/media/Labdata/DummyForTraining/201603291620_ExampleEDF.edf']

In [3]: load_edf.get_sensordfs_from_sensor_ids("TrainingDummy01",
start_date=datetime(2016, 3, 28)).head(3)

Out[14]:
SomeValue

Epoch_UTC
2016-03-29 14:09:44.560 0
2016-03-29 14:09:44.661 1
2016-03-29 14:09:44.761 2

Summary

• Python is awesome for
• automated testing in the lab
• data analysis
• creating beautiful plots ;)

• Try to establish a common base of packages, but keep it up to date
• Use proper python packages for reusable code
• Standardize your data formats

Thank you!
www.sensirion.com

www.sensirion.com

