MMO Game Servers in Twisted
Python

Dan Maas / Battlehouse.com

Swiss Python Summit 2017

www.battlehouse.com

(e BATTLEHOUSE

5-year-old company with a small engineering team

We make games with Python

www.battlehouse.com

(e BATTLEHOUSE

One engine, 7 game titles, 4 platforms

www.battlehouse.com 3

Thunder Run trailer

www.battlehouse.com

Thunder Run: War of Clans
). 0.9, 8at

e 4 000,000+ fans
e 20,000+ daily players

e 1,000+ concurrent players

www.battlehouse.com

We make "Builder RTS" games

RTS combat engine

www.battlehouse.com

We make "Builder RTS" games

Base management / upgrade system

e "

5,000

www.battlehouse.com

We make "Builder RTS"

Available on Facebook and Battlehouse.com

www.battlehouse.com

& C ‘ (2 https://apps.facebook.com/thunderrun/

[Fast [EJ calendar [pPcHECK @ mms [aDs:sc B ADs:TR @ Chartio

'i Thunder Run: War of Clans

Q

Missions § ¢ LTC. DangerDan [B[B[B[B[ﬂ N 1,526,917 l? iz 2,265,824 [+]
Level 37 L2 0 [D[m(m@

Syndicate (Normal)

Defeat 12 more levels in: ()

6d 11h m
A

oy

- N
-_— %
Page Jason # = -
i m Buildings | Research

L35 Tul 14.440/19,460 (€™ 8,639/9,850

Like us on Facebook | Forums | Patch Notes | Player Manual | Contact Support | Terms Your Player ID: 1112

=

[L.] Other Bookmarks

Home 20+ (\"

YOUR GAMES More

Join an All-New Adventure

Yok %%y Stormthrone
Discover a new world of MMORPG action in the
Stormthrone: Aeos Rising — FREE!

Play Now |- 100,000 people play this

DRB Student Loan

student.drbank.com

MBAs. Refinance Your Student Loans. Rates
start at 1.9%

Thunder Run: War of Clans
App Privacy - App Terms + Report/Contact

English (US) - Privacy - Terms - Cookies -
Advertising - Ad Choices [>- More ~

& 1echat(39)

dMes

Today's Topics

1. System architecture
2. How to write an asynchronous server
e with Twisted Python

3. Tips for creating "production quality" services

www.battlehouse.com

System Architecture

www.battlehouse.com

Game = Engine + Game Data + Art

Game = Engine + Game Data + Art

 Engine: Server, Client, Analytics
e Game Data: Units, buildings, items

e Art: Images, sounds

www.battlehouse.com 12

Engine

e Client / Server "web app"

e Server: Python

e with Twisted as main networking library
e Client: JavaScript/HTML5 Canvas

o with Google Closure Compiler

www.battlehouse.com

13

Also...

e Analytics system
e MongoDB->ETL->SQL & map/reduce
e Gamedata build pipeline
 Makefile-driven Python scripts

e Art build pipeline

www.battlehouse.com

14

The Server

e Client sends requests (by HTTP or WebSocket) to run game
actions

e “Upgrade this building"
 "Produce this unit"
e "Buy this thing in the Store"

e Check requirements; if OK, then mutate player state; send reply

www.battlehouse.com

15

Server Designh Requirements

e High scale
e 20,000+ daily players, 2,000+ concurrent players

e Low latency

e ~200ms hard limit to all requests

www.battlehouse.com

16

www.battle

17

Server Implementation

e Python

e Twisted Asynchronous HTTP server

e Cluster of processes (on Amazon EC2)

e Support ~100 online players per CPU core

e Scale by adding more cores

www.battlehouse.com

18

What is Twisted?

www.battlehouse.com

e Networking library

e Asynchronous event loop

e Supports many internet protocols
e HTTP, SSH, FTP, SMTHP, ...

e Consistent Python API

e Good OO design, easy to extend and customize

www.battlehouse.com

20

What is an asynchronous server?

www.battlehouse.com

www.battlehouse.com

Synchronous server

Client A
—

Server

=
|

O

— Receive request A

Waiting...

/ Send Response A

Client B

www.battle

23

Asynchronous server

Client A Server
lrﬁ ——

- — — Receive request A
Client B
=
Receive request B / %ﬁ/

/ Send Response|(A

Send Response B —

www.battlehouse.com

We use both synchronous and
asynchronous code

www.battlehouse.com

"Fast" requests are synchronous

Ims - 100ms:
e Change state in memory, or make fast database query

e Examples: Add damage, Buy item

www.battlehouse.com

26

'Slow" requests must be asynchronous

100ms - 10 seconds:
e Reading/writing Amazon S3 on login/logout
e Querying Facebook API

e Slow database queries, like fetching sorted Top Scores

www.battlehouse.com

27

How to do this in Python?

Use Twisted!

www.battlehouse.com

First: a synchronous HT TP server with Twisted

www.battlehouse.com 30

from twisted.web import server, resource
from twisted.internet import reactor

class MyResource(resource.Resource):
def render(self, request):
name = request.args| 'name’ |[0]
return "Hello %s!\n" % name

reactor.listenTCP(38080, server.Site(MyResource()))
reactor.run()

www.battlehouse.com 31

$ curl 'http://localhost:8080/?name=Dan'

"Hello Dan!”

www.battlehouse.com

32

Now, add a slow operation

from twisted.web import server, resource
from twisted.internet import reactor

class MyResource(resource.Resource):
def render(self, request):
name = request.args| 'name’ |[0]
LONG DATABASE QUERY here
return "Hello %s!\n" % name

reactor.listenTCP(38080, server.Site(MyResource()))
reactor.run()

www.battlehouse.com 34

Let's make this asynchronous

from twisted.web import server, resource
from twisted.internet import reactor

class MyResource(resource.Resource):
def render(self, request):
name = request.args| 'name’ |[0]
... start working ...
return twisted.web.NOT DONE YET

later, when work 1s done...
request.write("Hello")
request.finish()

www.battlehouse.com

36

General Pattern

1. "Before" code
e Parse and validate parameters
2. Slow asynchronous operation

3. "After" code

e Return result to client

www.battlehouse.com

37

How to connect the "before" and
"after" parts of the code?

www.battlehouse.com

How to "glue" together asynchronous code?

e Key problem in writing low-latency servers

e Major evolution in the last few years

www.battlehouse.com

39

Complications

e Multi-step operations

e Error handling

www.battlehouse.com

40

Many options have been tried

1. OS threads
2. Explicit callbacks

3. Promises/futures

(Twisted uses a mixture of 2. and 3.)

www.battlehouse.com

41

Explicit callbacks
doThis.then(doThat(), onkError=handlelt())

e Became popular due to Node/Javascript
e Easy to see what the code is doing
e But, gets ugly in complex cases

e Chaining

 Error handling

www.battlehouse.com 42

Promises/Futures

result = yield from

e Clean and clear syntax
e Easy to chain and handle errors

e Python (and many other languages) converging in this direction

www.battlehouse.com

43

Twisted's hybrid approach: Deferred

e Create a Deferred object to represent (the result of) an
asynchronous operation

e Attach callbacks and error handlers

* "Fire" the Deferred when the result is ready

www.battlehouse.com

44

def render(self, request):
name = request.args|['name' J[0]
d = defer.Deferred()
d.addBoth(self.complete deferred request, request)
my async_function(d)
return twisted.web.NOT DONE_YET

def complete deferred request(self, body, request):
if body == twisted.web.server.NOT DONE YET:
return body # still asynchronous
request.write(body)
request.finish()

def my async_function(d):
result = # ... do something
d.callback(result)

www.battlehouse.com

45

www.battlehouse.com

46

Control flow becomes a mess

www.battlehouse.com

Don't write your code this way

www.battlehouse.com

@inlineCal lbacks

www.battlehouse.com

Improvement!

@inlineCal lbacks
def render(self, request):

result = vyield my_async_function()
returnValue(result)

e Magically turns the part of the function after "yield" into a

callback

e (Clever use of Python generators

www.battlehouse.com

50

Chaining and Error Handling

@inlineCal lbacks
def render(self, request):
try:
result 1 = yield my _async_function 1()
result 2 = yield my async function 2(result 1)
returnValue(result 2)
except:

www.battlehouse.com

Log exception()
returnValue('error’')

51

The Future: async/await

async def render(self, request):
result 1 = await my _async_function 1()
result 2 = await my _async function 2(result 1)
return result 2

e Python 3.5+ only

e |anguage itself now handles asynchronous code

www.battlehouse.com

52

Review

e Asynchrony is vital to reduce latency
e Asynchronous code becomes a mess if you are not careful
e Twisted and Python help clarify control flow and

error handling

www.battlehouse.com

53

Hints and Tips

www.battlehouse.com

Hints and Tips

 Things your production code will need:
1. Tracking of in-flight requests

2. Latency profiling

www.battlehouse.com

55

Monitor in-flight requests

e How will you know if async requests are piling up?
e Or failing en masse?

 Asynchronous frameworks are bad at telling you this

www.battlehouse.com

56

Montior in-flight requests

e Create your own "bookkeeper”

AsyncHTTP_Facebook

[dropped (0
attempted 161988
lok 161292
lerrors 346
retries 350
num_on_wire {0
num_in_queue 0
num_waiting_for_retry IO

e Also: re-try failed requests, when appropriate

www.battlehouse.com

Hints and Tips

e Handle failure/cancel paths

e What if user logs out during execution of a slow database
query?

 Sometimes more complex than the main path (e.g. mutex issues)

www.battlehouse.com

58

Hints and Tips

e Asynchronous code is hard to write! Don't panic :)

www.battlehouse.com

59

Latency Profiling

www.battlehouse.com

Latency Profiling

e |Important metric is not CPU usage, but request latency
e Especially maximum request latency

e Traditional CPU profiling does not help here

www.battlehouse.com

61

Server Latency

5000
4000 : . '
3000 ; .o ;.
2000] = .) e de Co
'. o o o . ° : a L o !
1000kmp - 3¢ Sugh sl nitin 8%
0 - ' -
May 24 May 24 May 24 May 24 May 24 May 24 May 24 May 24 May 24 May 24 May 24 May 25
02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

www.battlehouse.com 62

www.battlehouse.com
B

Wrap every "entry point" with time
measurements

def render wrapper(self, request):
start time = time.time()
result = self.do render(request)
end time = time.time()
unhalted time = end time - start time
record latency(request, unhalted time)

(conceptually - this can be cleaned up with decorators)

www.battlehouse.com

Collect data on each request:

* Average latency (performance hotspot)
 Maximum latency (latency hotspot)

e Advanced version: track 95th and 929th percentile latencies

www.battlehouse.com

65

Server Latency

Approximate unhalted load: 4.3%
Average request latency: 0.5 ms

Sort by Max

Request Average [Max [Total |[Total %#Calls
ALL 0.5ms [2522.7 ms|9432.8 s{68.3% 19167367
|CONTROLAPI(HTTP:reconfig) 2522.2 ms|2522.2 msf2.5 s |0.0% 1
handle_client_hello 24ms [9344ms [23.7s [02% [9820
PLAYER_STATE_QUERY 0.1ms [9293ms [2.1s [00% [30645
PING_OBJECT 22ms [808.2ms |139.1s [1.0% |62164
|complete_client_hello 155.7ms [762.0ms [1510.95[10.9% [9701
VISIT_BASE2 151 ms [690.7ms [89.7s [0.6% 5921
|complete_attack 156ms [683.1ms [7182s [5.2% [46081
|QUARRY_COLLECT 436ms 6768 ms |555.1s [4.0% |12736
player_table:deserialize 18 7ms |5309ms [353.6s [2.6% |18888

www.battlehouse.com

66

Watch total “unhalted” time

e What % of the time the CPU is waiting for the next request?

e Approaching 50% = danger!

www.battlehouse.com

67

Watch total “unhalted” time

e What % of the time the CPU is waiting for the next request?

e Approaching 50% = danger!

www.battlehouse.com

68

Have fun with Twisted!

www.battlehouse.com

www.battlehouse.com 70

Bonus topic: Adding WebSockets

e Community patch to Twisted
e http:/twistedmatrix.com/trac/ticket/4173
e WebSocket messages call the same handlers as HTTP requests

- Hack: create a fake HT TP request for each WebSocket message

www.battlehouse.com

71

class WSFakeRequest(object):
def @ 1init_ (self, proto):
self.proto = proto
def write(self, buf):
if self.proto.connected:

self.proto.transport.write(butf)

class MyWSProcotol(protocol.Protocol):
def dataReceived(self, data):

response = MyHTTPProcotol.render(WSFakeRequest(self)
if response == twisted.web.server.NOT DONE YET: pass
self.transport.write(response)

www.battlehouse.com

)

72

Websockets results

 |Improved robustness vs. HTTP, but performance did not change
e HTTP Keepalive is doing its job

e Beware protocol and browser bugs

www.battlehouse.com

73

