
API Design is Hard

By Dave Halter
@davidhalter on Github
@jedidjah_ch on Twitter

 2

Me

● Creator of Jedi and jedi-vim
● Both have ~ 2000 stars on Github
● Starting to really like clean code!
● Of course some parts of the API of Jedi suck.

 3

Influences & Inspirations

● API Design: Lessons Learned by Raimond
Hettinger

● Good API Design by Alex Martelli

 4

Writing clean code

● Clean Code / Good Architecture
● Testing (py.test/tox)
● Documentation (sphinx)
● Code Reviews

 5

API

● “Application Program Interface”

● Let's just talk about Python “interfaces”.
● Are there interfaces in Python?

 6

API

● “Application Program Interface”

● Let's just talk about Python “interfaces”.
● Are there interfaces in Python?
● Yes: “abc.ABCMeta”

 7

Bad APIs #1

● No API
● But everything has an interface

 8

Bad APIs #2

Going for both, it shouldn't be possible to write
both:

jedi.names(source)

jedi.Script(source).names()

Decide!

 9

Bad APIs #3

● Inconsistency
● Not following standards like

class Foo(object):

 def getRange(self): # Java style

 return self._range

But: BeautifulSoup 3 was still awesome.

 10

Think!

● Brainstorm – Design / Performance
● Think about data types
● Don't do IO that is not readable by other

languages, like pickle.
● Simple is better than complex.

- PEP 20: The Zen of Python

 11

Be conservative!!!

 12

Private/Protected/Public

● _variable for protected
● __variable for private (don't use it a lot though)
● Use _ a lot!

 13

Named Arguments

● What is this doing:

 twitter_search('python', 3, False)

● Way better:

 twitter_search('python', num_results=3, retweets=False)

● In Python 3:
 def twitter_search(name, *, num_results=20, retweets=False):

 14

Properties

● Use them, but only for clear defined “getters”:

 @property

 def line_nr(self):

 return 42

● For more compliated things:

 def docstring(self):

 return ... # maybe in the future parametrize

 15

Transitions

● Do transitions incrementally, big transitions like
Python 2 → 3 are hard.

● Deprecate with Warnings & Documentation

 16

Transitions

 def call_name(self):
 """
 .. deprecated:: 0.8.0
 Use :attr:`.name` instead.

 The name (e.g. 'isinstance') as a string.
 """
 warnings.warn("Use name instead.", DeprecationWarning)
 [...]

 17

Service Oriented Architecture

● Amazon:
~2002: Use service interfaces only.

“Anyone who doesn’t do this will be fired. Thank you; have a nice day!”

 18

Good Code

● Use what you learned in API Design for your
internal API's.

● You should be able to go public with a sub-
package without refactoring.

 19

KTHXBYE

● Like writing APIs? We're looking for Python/DevOps Engineers:
job16@cloudscale.ch

● @davidhalter on Github
● @jedidjah_ch on Twitter

mailto:job16@cloudscale.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

